Stokastiska processer och simulering I 24 maj
|
|
- Sandra Månsson
- för 6 år sedan
- Visningar:
Transkript
1 STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj Basdel Uppgift 1 Låt X i }= storleken på skolklasserna (oberoende och likafördelade) och N= antal skolklasser/dag (oberoende av storleken på klasserna). Totala antalet besökande elever ges av S = N i=1 X i. N Bin(n = 9, p = 2/3) så att E[N] = np = 6 och Var(N) = np(1 p) = 2. Väntevärde och varians av X i är givna direkt i uppgiften. [ N ] a) Vi har E [S N=n] = E i=1 X i N=n [X i } likafördelade ] = ne[x 1 ] och därmed E [S N] = NE[X 1 ]. = [X i } oberoende av N] = E [ n i=1 X i] = Upprepad betingning ger E[S] = E[E[S N]] = E[NE[X 1 ]] = E[N]E[X 1 ] = 6 30 = 180. ( N ) b) Vi har Var (S N=n) = Var i=1 X i N=n = [X i } oberoende av N] = Var ( n i=1 X i) = [X i } oberoende och likafördelade ] = nvar(x 1 ) och därmed Var (S N) = NVar(X 1 ). Betingade variansformeln ger Var(S) = Var(E[S N]) + E[Var(S N)] = Var(NE[X 1 ]) + E[NVar(X 1 )] = Var(N)(E[X 1 ]) 2 + E[N]Var(X 1 ) = = Uppgift 2 a) i) Eftersom bilarnas färger är oberoende av varandra så är ankomsten av svarta bilar också en Poissonprocess med parameter λ s = 0.7λ = 1.4 bilar/minut. Tiden tills den första svarta bilen dyker upp är då Exp(λ s ). ii) Ankomsten av vita bilar är också en Poissonprocess med intensitet λ v = 0.3λ = 0.6 och den är oberoende av processen enligt vilken vita bilar anländer. Det handlar då om konkurrerande händelser med exponentialfördelad tid och vi får P(första bilen är svart) = λ s λ s+λ s = 0.7. Not: Detta kan också inses direkt då det är just 70% chans att en godtycklig bil är svart och den första bilen är också en godtycklig bil.
2 Stokastiska processer och simulering I, 24 maj iii) Givet att vi vet hur många bilar som anlänt så är dessa händelser oberoende och likformigt fördelade på det intervall under vilket vi observerat dem. Vi får därför P(4 svarta under första minuten} 3 vita under de sista 4 minutrarna}) = ( 1 5 )4 ( 4 5 )3. iv) Även om vi vet hur många svarta bilar kalle räknade till så säger detta inte något om hur många vita bilar som anlände eftersom det rör sig om två oberoende Poissonprocesser. Antalet vita bilar under t = 5 minuter blir alltså Poissonfördelat med parameter λ = λ v t = = 3. v) Vi vet att det kom 7 bilar, att sannolikheten för att en bil är svart är 70% oberoende av färgen på de andra bilarna. Vi känner igen antalet svarta bilar som en Binomialfördelning med parametrar n = 7 och p = 0.7. b) i) Bilarna ( kunder ) anländer enligt en Poissonprocess med intensitet och tiden att passera krockstället ( kassan ) är exponentiell med väntevärde 20 sekunder (=1/3 minut). Detta känner vi igen som en M/M/1-kö med parametrar λ=2 och µ= 1 1/3 =3. Detta är ett exempel på en födelse-/dödsprocess. λ= μ=3 λ=2 λ=2 λ= μ=3 μ=3 ii) Vi ställer enklast upp balansekvationer vid de streckade linjerna i figuren. Dvs ekvationerna får formen λp n = µp n+1 för n = 0, 1,... Vi sätter in den i uppgiften ( ) n ( ) ( ) n+1 ( ) givna lösningen P n = λ µ 1 λ µ och P n+1 = λ µ 1 λ µ i balansekvationen och ser direkt att lösningen satisfierar ekvationen. Dessutom ser vi att lösningen är en geometrisk fördelning med parameter p = 1 λ/µ och därmed vet vi att n=0 P n = 1, vilket säkerställer att lösningen är en fördelning. iii) Det är minst 1 bil som väntar på att få passera krockstället då processen befinner sig i tillstånd 2 eller högre vilket är komplementhändelsen till att att processen befinner sig i tillstånd 0 eller 1. Då har vi P( minst 1 bil väntar på att passera krockstället ) = 1 P( 0 eller 1 bilar i M/M/1-kön ) = 1 P 0 P 1 = 1 (1 λ µ ) λ µ (1 λ µ ) = ( λ µ )2 = ( 2 3 )2. i Uppgift 3 i) Vi ser att laboranten påstår att han simulerat fram en övergång från tillstånd 4 till tillstånd 2 (X 2 och X 3 ), men enligt koden så går man alltid till tillstånd 3 från tillstånd 4 så något har blivit fel och rapporten kan inte godkännas.
3 Stokastiska processer och simulering I, 24 maj ii) P = 0 1/5 0 1/5 3/ iii) Det finns två klasser. Den första klassen består av tillstånd 1, 2, 3, 4} och är transient med period 2. Den andra klassen består av det absorberande tillståndet 5}. (För godkänt svar krävs också kortfattad motivering.) iv) Låt P (m) ij = P(X n+m =j X n =i). Notera att n inte behövs tack vare tidshomogeniteten. Om vi placerar elementen P (m) ij i matrisform så kan vi beräkna dessa som P (m) = P m, dvs genom att upphöja övergångsmatrisen till m. Vi ska nu beräkna P (X 9 =j X 7 =2) för alla j S. Vi söker alltså rad 2 i matrisen P 2. Denna rad blir 0, 1/5, 0, 1/5, 3/5} (för j = 1, 2, 3, 4, 5}). v) Det finns en transient klass och ett absorberande tillstånd. När m går mot oändligheten så kommer sannolikheten för att processen befinner sig i det absorberande tillståndet att gå mot 1 och sannolikheten att befinna sig i något av de transienta tillstånden att gå mot 0. Låt P j = lim m P (m) ij, j 1, 2, 3, 4, 5} vara den asymptotiska fördelningen. Vi får P 5 = 1 och övriga P j = 0. Not: Det finns alltså en gränsfördelning trots att kedjan är reducibel och den transienta klassen är periodisk! (10 p) Uppgift 4 a) Låt Z vara antalet personer som värvas av en enskild deltagare. Låt µ = E[Z]. Förgreningsprocess kan fortsätta i all evighet om µ > 1. I detta fall får vi E[Z] = 0 p p 2 = 2α. Villkoret µ > 1 ger α > 1/2. För att p 0 och p 1 ska vara korrekta sannolikheter så måste dock också gälla att α 1 och därmed får vi svaret α (1/2, 1]. Vi kan beräkna sannolikheten p att spelet fortsätter i all evighet som p = 1 π 0, där π 0 är sannolikheten att förgreningsprocessen dör ut. π 0 är den minsta icke-negativa lösningen till ekvationen π 0 = k=0 πk 0 p k, eller i detta fall π 0 = (1 α) + (π 0 ) 2 α. Denna andragradsekvation har två lösningar, där den ena alltid är 1 och den andra är 1 α α π 0 = 1 då α [0, 1/2] 1 α α då α (1/2, 1]. Vi får och därmed får vi p = 0 då α [0, 1/2] 2α 1 α då α (1/2, 1]. b) För den som startar spelet blir förväntad vinst allt som denne får in från de personer han har värvat. Eftersom väntevärdet är en linjär operator kan vi betrakta varje generation för sig och behöver inte ta hänsyn till att det finns ett beroende mellan efterföljande generationer. Förväntad storlek på varje generation n är mu n. Den som startade spelet
4 Stokastiska processer och simulering I, 24 maj (generation 0) kommer att få in 1000µ från de han har värvat (generation 1). Men av det generation 2 betalar till generation 1 kommer ju också hälften att gå till generation 0. Det tillkommer därför 1000µ från generation 2, 1000µ3 ( 1 2 )2 från generation 3 och så vidare. Totala vinsten blir V 0 = n=0 1000µn+1 ( 1 2 )n = 1000µ n=0 µn ( 1 2 )n = 1000 µ 1 µ, då µ < 2 2 och den blir oändlig om µ 2. Vi har ju också att µ = 2α och får α V 0 = 1 α då α [0, 1). då α = 1 Låt V j vara förväntad vinst för en person i generation j 1 i spelet. Eftersom varje gren av spelet är oberoende så kommer varje annan person i spelet att få V 0 från de han har värvat, men får bara behålla hälften. Dessutom måste han betala 1000 kr i avgift för att få gå med i spelet. Därmed blir vinsten för var och en av de andra α 1 V j = 1 α då α [0, 1), då α = 1 oberoende av j. Not 1: Observera att detta blir en förlust då α [0, 1/2). Not 2: Pyramidspel kan konstrueras på många olika sätt och detta är bara ett exempel. Uppgift 5 a) Simuleringen kan utföras med hjälp av inversa transformmetoden. Den går till enligt följande: 1. Vi bestämmer först fördelningsfunktionen utifrån den givna täthetsfunktionen f(x) = 2x. Vi får F (x) = x 2 då x [0, 1]. 2. Vi söker inversen F 1 (u) genom att sätta u = F (x) och lösa ut x. Vi får x = F 1 (u) = u för u [0, 1]. 3. Vi definierar nu det stokastiska talet X = F 1 (U) = U. Enligt teorin i boken så kommer X att ha den önskade fördelningen F (x). 4. Simuleringen går alltså till så att vi först simulerar fram ett likformigt fördelat tal U och sedan tar vi roten ur det. Detta är vårt svar! b) (4 p) 1. Först antar vi att vi har tillgång till två slumptal U 1 och U 2. Vi simulerar två stycken tal X 1 och X 2 enligt metoden som redovisades i uppgift (a). Eftersom Y = maxx 1, X 2 } så tar vi nu helt enkelt det största av våra två tal X 1 och X 2 vilket blir vårt simulerade värde för Y. 2. Om vi bara har tillgång till ett likformigt fördelat slumptal behöver vi göra på något annat sätt. Vi söker fördelningsfunktionen för Y. Vi har F Y (y) = P(Y y) =
5 Stokastiska processer och simulering I, 24 maj P(maxX 1, X 2 } y) = P(X 1 y, X 2 y) = [oberoende] = P(X 1 y)p(x 2 y) = y 4 för y [0, 1]. Inversa transformmetoden ger oss nu Y = (U) 1/4 och då räcker det alltså med bara ett likformigt fördelat slumptal. (6 p) Uppgift 6 Vi studerar först hur lång tid en spelomgång tar. Varje enskilt spel tar en exponentialfördelad tid oberoende av alla andra spel och med förväntad speltid 1 minut. Detta känner vi igen som en Poissonprocess med parameter λ s = 60 per timme. Spelet avbryts dock vid den första vinsten som sker med sannolikhet 0.1. Vi kan se processen som genererar vinster som en oberoende Poissonprocess med parameter λ v = = 6. En sådan process har exponentialfördelad tid till första händelsen (vinst). Nu kan vi betrakta hela spelprocessen som en Markovprocess i kontinuerlig tid. Låt tillståndsrummet vara S = 0, 1, 2} där vi räknar hur många personer som just nu befinner sig i systemet. Personer anländer till systemet med intensitet λ = 6 och med hänsyn tagen till att maskinerna är oberoende och att personer som anländer då båda är upptagna går därifrån utan att spela så får vi nedanstående figur: λ=6 λ= μ 1 =6 μ 2 =2 6=12 Då tillståndrummet är ändligt och kedjan är irreducibel så existerar en gränsfördelning. Denna kan beräknas genom att lösa systemet av balansekvationer tillsammans med villkoret att alla sannolikheter ska summera till 1. Vi får ekvationssystemet 6P 0 = 6P 1 6P 1 = 12P 2, P 0 + P 1 + P 2 = 1 vilket har lösningen P 0 = 2 5 P 1 = 2 5 P 2 = 1 5 Alla som anländer då systemet är i tillstånd 0 eller 1 kommer att spela och det innebär att 4/5 av alla som anländer kommer att spela, vilket svarar mot = 24 5 per timme. Vi kan räkna på detta sätt därför att vi vet att personer som anländer enligt en Poissonprocess ser tidsmedelvärden (principen kallas PASTA på engelska). Hur mycket tjänar nattklubben på varje person som spelar? Alla lämnar systemet efter att ha vunnit 100 kr. Frågan är hur mycket de har förlorat för att nå dit! Eftersom de förlorar och vinner varje enskilt spel med sannolikhet 0.1 och slutar vid vinst så kommer antalet spel att vara ffg-fördelat och förväntat antal spel blir då = 10. I varje spel satsas 20 kr och förväntad insats per spelomgång blir alltså 200 kr. Skillnaden mellan satsade pengar och utbetald vinst utgör nattklubbens förtjänst och blir i detta fall 100 kr per spelomgång.
6 Stokastiska processer och simulering I, 24 maj Vi ser alltså att det i snitt spelar 24 5 personer per timme och att var och en av dem genererar en förväntad vinst på 100 kr till nattklubben. Nattklubbens förväntade vinst på de två spelmaskinerna blir alltså = 480 kr per timme. (10 p) /KS
Stokastiska processer och simulering I 24 augusti
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016
TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 4 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 30 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
e x/1000 för x 0 0 annars
VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Tentamen i FMS180/MASC03 Markovprocesser
Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Fö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Tentamen i matematisk statistik, TAMS15/TEN (4h)
LINKÖPINGS UNIVERSITET Kurskod: TAMS1 Matematiska institutionen Provkod: TEN1 Johan Thim Datum: 2018-12-42 Institution: MAI Tentamen i matematisk statistik, TAMS1/TEN1 2018-12-42 (4h Hjälpmedel är: miniräknare
6. Flerdimensionella stokastiska variabler
6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y
Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)
Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall
TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL
Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
P =
Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.
Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Tiden i ett tillstånd
Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer 3 Betingade
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1
Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen
4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
40 5! = 1, ! = 1, Om man drar utan återläggning så kan sannolikheten beräknas som 8 19
Petter Mostad Tillämpad matematik och statistik Matematiska Vetenskaper, Chalmers Lösninngsförslag för MVE/MSG8 Matematisk statistik och diskret matematik Tenta Januari 27, 8: - 2:. Frågan är formulerat
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH
Läs detta först: INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Det här kompendiet är avsett som en introduktion till kompendiet av Enger och Grandell. Det är absolut inget fel på det officiella
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Markovkedjor. Patrik Zetterberg. 8 januari 2013
Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
Problemdel 1: Uppgift 1
STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y
Konvergens och Kontinuitet
Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser 25 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Problemsamling i Sannolikhetsteori
Problemsamling i Sannolikhetsteori till An Intermediate Course in Probability av Allan Gut Sammanställd av Harald Lang 22/5-05 Kapitel 0 (Introduction) Man har ett seriesystem med två enheter som går sönder
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
(x) = F X. och kvantiler
Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i