P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1

Storlek: px
Starta visningen från sidan:

Download "P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1"

Transkript

1 Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen µ (), så kan vi beräkna kedjans ändligtdimensionella fördelningar för k N och j,..., j k S. P(X nk = j k,..., X n = j ) Antag att n n 1,... n k N. Då har vi P(X nk = j k,..., X n = j ) = P(X n k = j k,..., X n = j ) [ ] P(X n = j ) = etc... P(X n = j ) = P(X n k = j k, X nk 1 = j k 1,..., X n = j ) P(X nk 1 = j k 1,..., X n = j )... P(X n 1 = j 1, X n = j ) P(X n = j ) P(X n = j ) = P(X nk = j k X nk 1 = j k 1 )... P(X n1 = j 1 X n = j )P(X n = j ) = jk 1,j k (n k n k 1 )... j,j 1 (n 1 n ) ( µ () P n ) j där i,j(n) = ij (n) = (P n ) i,j och där vi mellan andra och tredje raden utnyttjade definitionen av betingad sannolikhet P(X nk = j k, X nk 1 = j k 1,..., X n = j ) P(X nk 1 = j k 1,..., X n = j ) = P(X nk = j k X nk 1 = j k 1,..., X n = j ) samt Markovegenskaen P(X nk = j k X nk 1 = j k 1,..., X n = j ) = P(X nk = j k X nk 1 = j k 1 ) och analogt för de andra termerna. Alltså: de ändligtdimensionella fördelningarna till en Markovkedja bestäms av startfördelningen µ () och övergångsmatrisen P. En radvektor π är en stationär fördelning om 1. π i för alla i S 1

2 . i S π i = 1 3. πp = π Notera att de två första kraven endast säger att π är en fördelning för Markovkedjan. Det viktiga är krav nummer tre, att fördelningen π är invariant under avbildningen P. Notera vidare att detta innebär att om µ n = π för något n så har vi µ (n) = µ (n ) P n n = πp n n = πp P n n 1 = πp n n 1 =... = π Om kedjan någon gång får den stationära fördelningen så kommer den att ha denna fördelning för alla efterföljande tidunkter. Observera att det är fördelningen som är samma; det innebär inte att man stannar i samma tillstånd. Varning: Alla kedjor har inte stationära fördelningar. Om ij (n) = (P n ) ij > för något n så säger vi att i S kommunicerar med j S Om även j S kommunicerar med i S så sägs i och j kommunicera med varandra. Att ett tillstånd i S kommunicerar med j S innebär alltså att det är möjligt (sannolikheten är ositiv) att gå från i till j inom ändlig tid å något sätt, dvs möjligen genom att assera andra tillstånd å vägen. Om det är så att alla ar i, j S kommunicerar med varandra, så sägs kedjan vara irreducibel. Det innebär alltså att vi kan nå alla tillstånd från vilket tillstånd som helst, å ett ändligt antal tidsenheter dock så tar det generellt sätt olika lång tid gå mellan de olika aren. Kedjan i exemlet med slumvandraren från förra föreläsningen är irreducibel ty vi kan ta oss från ett tillstånd till vilket annat inom två tidsenheter. Kedjan med övergångsmatris 1 q 1 q 1 1 är dock inte irreducibel. Den kan reduceras ner till två olika kedjor beroende å utfallet av X. Ett viktigt verktyg för att åskådliggöra en Markovkedja är genom att rita u dess tillståndsgraf. Man ritar u varje tillstånd som en cirkel, sedan drar man ilar från varje tillstånd i S till de tillstånd j S som är sådana att ij är ositiv, dvs sådana som man kan gå till från i direkt, å en tidsenhet. Om man i övergångsgrafen för ett tillstånd i s, hittar en väg till ett annat tillstånd j S genom att följa ilarna i grafen, så kommunicerar i med j och ij (n) > för något n (vilket är lika med antalet ilar vi var tvungna att följa för att komma till j). Observera att det räcker att man kan hitta en väg för att visa att ett tillstånd kommunicerar med ett annat. Låt, för j S, N(j) = {n 1 : jj (n) > }

3 dvs de möjliga tiderna tills kedjan kan återkomma till j S. Nu definieras erioden för j S, d(j), som den största gemensamma delaren för N(j). Tillståndet j S sägs vara aeriodiskt om d(j) = 1 och eriodiskt om d(j) > 1. Vidare sägs Markovkedjan vara aeriodisk om alla tillstånd är aeriodiska. I exemlet med slumvandraren är alla tillstånd eriodiska med eriod, eftersom vi endast kan ta oss tillbaka till starttillståndet i jämna multilar av. Sålunda är denna kedja ej aeriodisk. Nu kommer en mycket användbar sats: Sats: I en irreducibel tidsdiskret Markovkedja har alla tillstånd samma eriod. För att kontrollera om en irreducibel kedja är aeriodisk så räcker det alltså att ta reda å erioden för ett tillstånd. Om den är 1 så är kedjan aeriodisk, och annars inte. För ett tillstånd j S definieras rekurrenstiden T j = min{n 1 : X n = j} Rekurrenstiden är alltså den tid det tar att komma till tillståndet j S. Medelrekurrenstiden definieras som m j = E{T j X = j} alltså hur lång tid det tar i genomsnitt att komma tillbaka till j S om vi börjar kedjan i j S. Sats: En irreducibel kedja har stationär fördelning π om och endast om alla medelrekurrenstider m j är ändliga. I så fall är π entydigt bestämd av π j = 1 m j. För exemlet med slumvandraren har vi ju att P = och för denna kedja ufyller π = ( 1 4, 1 4, 1 4, 1 4 ) kravet π = πp, så π är en stationär fördelning. Ur detta tillsammans med ovanstående sats får vi att medelrekurrenstiderna m j = E{T j X = j} = 1 π j = 4 för alla j {1,, 3, 4}. Det tar alltså i genomsnitt 4 tidsenheter innan man kommer tillbaka till sin starttillstånd. Om vi istället väljer att beräkna medelrekurrenstiderna först och sedan använda satsen ovan för att beräkna den stationära fördelningen, så får vi P(T 1 = k X = 1) = P(X k = 1, k 1 r=1 {X r 1} X = 1) = (k 1 ) = P(X k = 1 X (k 1) = 3) P(X r = 3 X (r 1) = 3) P(X = 3 X = 1) = = 1 (1) k = k r= 3

4 och vi har att antalet tidssteg om längd tills vi träffar tillstånd 1 igen, givet att vi börjar i X = 1, är Geo(1/)-fördelat. Eftersom en Geo(1/)-fördelad s.v. har väntevärde så har vi m 1 = E{T 1 X = 1} = E{Antalet tidssteg om längd X = 1} = = 4 Samma räknningar gäller för alla j så har vi att m j = 4 för alla j och satsen ger oss att π j = m 1 j = 1 4 för alla j {1,, 3, 4} vilket ju är samma resultat som vi enkelt fick direkt genom att titta å övergångsmatrisen P. Om S är ändlig, dvs S = {s 1,..., s k } för något k <, och Markovkedjan är irreducibel och aeriodisk, så kan man visa att m j = E{T j X = j} < j S = {s 1,..., s k } och således, med hjäl av ovanstående sats, att Markovkedjan har unik stationär fördelning π, bestämd av π j = m 1 j Ett exemel å en ändlig [ ] kedja som inte har unik stationär fördelning är kedjan med 1 övergångsmatris P =. 1 Varför är vi intresserade av den stationära fördelningen? Antag att en Markovkedja, {X n } n=1 åbörjades för länge sedan, och vi är intresserade av sannolikheten att den nu befinner sig i ett visst tillstånd j. Eftersom kedjan ågått länge borde sannolikheten att den befinner sig i tillståndet just nu, eller om en tidsenhet vara ungefär det samma. Matematiskt betyder detta att Markov kedjans fördelning konvergerar mot någon fördelning µ som inte beror å tiden: dvs: µ (n) D µ då n lim P(X n = j) = µ(j). n Antag att kedjan har en sådan asymtotisk födelning. Det förljer då att: µp D µ (n) P = µ (n+1) D µ. Alltså ufyller µ vilkoret µp = µ och är en stationär fördelning för Markov kedjan. Förut så visade vi att om X n är finit och irreducibel så har den recis en stationär fördelning, och det är den den måste konvergera till. Det är viktigt att observera att inte alla Markovkedjor konvergerar å det här viset: om kedjan, till exemel, är eriodisk och endast kan befinna sig i tillstånd j å jämna tider är ju sannolikheten att den är där nu, och om en tidsenhet inte den samma. Sats: En irreducibel, aeriodisk Markov kedja {X n } n=1 med finit tillståndsrum konvergerar mot sin unika stationära fördelning π: X n D π då n 4

5 Beviset för detta är mycket vackert, men ingår inte i denna kurs. Exemel: Selarens Fördärvelse En erson selar å ett kasino. Han börjar med i dollar, och i varje selomgång vinner han en dollar med sannolikhet eller förlorar en med sannolikhet q = 1. Selet fortsätter tills han når N dollar, eller är ruinerad. Han förmögenhet efter n omgångar skrivs X n och är en tidshomogen Markovkedja å S = {,..., N} med övergångs-matris: 1... q q... P = q.. q 1 Observerar att och N är absorberande tillstånd - när rocessen väl nått dem kan den aldrig lämna. Låt nu w i beteckna sannolikheten att vi någonsin når N om vi börjar i tillstånd i. w i = P(X n når N X = i) = P(X n når N X = i, X 1 = i + 1)P i,i+1 + P(X n når N X = i, X 1 = i 1)P i,i 1 = w i+1 + w i 1 q Det sista steget kräver (så klart) Markov egenskaen! En omskrivning av ovan ger att w i+1 w i = q (w i w i 1 ) för i = 1,,..., N 1. Vi vet även att w =, så w w 1 = q ( ) q (w 1 w ) = w 1 w 3 w = q ( ) q (w w 1 ) = w 1. w N w N 1 = q (w N 1 w N ) = ( ) q N 1 w 1 Genom att summera termerna längst till vänster och höger, så får vi att ( (q ) ( ) q ( ) ) q N 1 w i w = w Högerledet är en så kallad geometrisk summa, för vilken det finns en känd formel. Det följer att: w i = { 1 (q/) i 1 q/ P 1 om 1 ip 1 om = q = 1 5

6 Eftersom vi vet att w N = 1, kan vi lösa ut w 1 ur formeln, och får: 1 (q/) i om 1 w i = 1 (q/) N i N om = q = 1 Detta ger oss alltså sannolikheten att selaren någonsin når N dollar. Alternativet är att han blir ruinerad innan detta inträffar. Så varför är detta intressant? Antag att han börjar med $, och selar tills de är borta eller han når $4. Det följer då av insättning i ovan beräkning att om =.5 så är sannolikheterna för de möjliga utfallen båda en halv. Det verkar rätt. Men vad händer om kasinon har ett litet övertag? Antag att =.45. Selet kan tyckas vara nästan jämnt, men från ovan beräkning får vi att w = 1 (.55/.45) (.55/.45) Det vill säga, selaren har mindre en % sannolikhet att ha engar kvar när han lämnar kasinot. (Observera att om selaren hade satsat alla engarna å fösta kastet i stället för en dollar i taget, hade han klarat sig mycket bättre!) 6

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 4 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 30 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Markovkedjor. Patrik Zetterberg. 8 januari 2013

Markovkedjor. Patrik Zetterberg. 8 januari 2013 Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser 25 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer

Läs mer

Tentamen i FMS180/MASC03 Markovprocesser

Tentamen i FMS180/MASC03 Markovprocesser Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer 3 Betingade

Läs mer

Exempel. Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V) mulet (M) regn (R)

Exempel. Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V) mulet (M) regn (R) Exempel Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V mulet (M regn (R Exempel Vackert idag vackert imorgon sannolikheten 0.6 Vackert idag mulet imorgon sannolikheten

Läs mer

Fö relä sning 2, Kö system 2015

Fö relä sning 2, Kö system 2015 Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p) Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

Stokastiska processer och simulering I 24 maj

Stokastiska processer och simulering I 24 maj STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna

Läs mer

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren. Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

M/M/m/K kösystem. M/M/m/K kösystem

M/M/m/K kösystem. M/M/m/K kösystem Allmänt om KÖSYSTEM (=betjäningssystem). För att definiera ett kösystem måste vi ange ankomstrocessen ( dvs hur kunder ankommer till systemet) och betjäningsrocess (dvs hur lång tid det tar att betjäna

Läs mer

P =

P = Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Finansiell statistik FÖRELÄSNING 11

Finansiell statistik FÖRELÄSNING 11 Finansiell statistik FÖRELÄSNING 11 Slumpvandring Brownsk rörelse 4 maj 2011 14:52 Pär och Pål Pär och Pål spelar ett hasardspel mot varandra upprepade gånger. Pär vinner = Pål betalar en krona. Pål vinner

Läs mer

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n = Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är

Läs mer

Tentamen i matematisk statistik, TAMS15/TEN (4h)

Tentamen i matematisk statistik, TAMS15/TEN (4h) LINKÖPINGS UNIVERSITET Kurskod: TAMS1 Matematiska institutionen Provkod: TEN1 Johan Thim Datum: 2018-12-42 Institution: MAI Tentamen i matematisk statistik, TAMS1/TEN1 2018-12-42 (4h Hjälpmedel är: miniräknare

Läs mer

Föreläsning 9, FMSF45 Markovkedjor

Föreläsning 9, FMSF45 Markovkedjor Föreläsning 9, FMSF45 Markovkedjor Stas Volkov 2017-10-10 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F9: Markovkedjor 1/1 Stokastisk process (rep) En stokastisk process {X(t), t T} är en följd av stokastiska

Läs mer

Tiden i ett tillstånd

Tiden i ett tillstånd Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori. Jan Grandell

Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori. Jan Grandell Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas

Läs mer

Om Markov Chain Monte Carlo

Om Markov Chain Monte Carlo Om Markov Chain Monte Carlo Gunnar Englund Matematisk statistik KTH Ht 2001 1 Inledning Markov Chain Monte Carlo MCMC är en modern teknik att simulera komplicerade fördelningar som har fått stora tillämpningar

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

e x/1000 för x 0 0 annars

e x/1000 för x 0 0 annars VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH

INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Läs detta först: INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Det här kompendiet är avsett som en introduktion till kompendiet av Enger och Grandell. Det är absolut inget fel på det officiella

Läs mer

Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor

Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor Inledning I del 1 av denna laboration utnyttjas Matlab och Simulink för att simulera polplaceringsbaserad regulatordesign för

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Kurs: HF Matematisk statistik Lärare: Armin Halilovic Datum: 8 maj 9 Skrivtid: 8:-: Tillåtna hjälmedel: Miniräknare av vilken ty som helst och bifogade formelblad (sida ). Förbjudna hjälmedel:

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3.

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3. Linjära avbildningar Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om F (v +v ) = F (v)+f (v ) och F (cv) = cf (v) för alla v, v V och alla skalärer c. EX. Speglingar, rotationer,

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma

1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2: FÖRGRENINGSPROCESSER MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser Syftet med denna laboration är att du skall bli mer

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa

Läs mer

Om konvergens av serier

Om konvergens av serier Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

LAPLACES OCH POISSONS EKVATIONER

LAPLACES OCH POISSONS EKVATIONER TH Matematik Olle tormark LAPLACE OCH POION EVATIONE Poissons ekvation φ(x) = (där ρ är en given funktion och φ söks) satisfieras till exempel av den elektrostatiska potentialen i ett område som innehåller

Läs mer

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017 SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 18 Institutionen för matematik KTH 12 december 2017 Idag Talföljder Serier Jämförelse med integraler (Cauchy s integralkriterium) Andra konvergenskriterier (jämförelsekriterier) Mer i morgon

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Lösningsförslag till Tentamen: Matematiska metoder för ekonomer

Lösningsförslag till Tentamen: Matematiska metoder för ekonomer Matematiska Institutionen Tentamensskrivning STOKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 5-- Lösningsförslag till Tentamen: Matematiska metoder för ekonomer aril 5, kl 9:-: (a) Vi använder

Läs mer

Föreläsning 2, Matematisk statistik för M

Föreläsning 2, Matematisk statistik för M Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret

Läs mer

Bayesianska numeriska metoder II

Bayesianska numeriska metoder II Bayesianska numeriska metoder II T. Olofsson Gibb's sampling Vi har sett att en viktig teknik vid Bayesiansk inferens är s.k marginalisering vilket, för kontinuerliga variabler, innebär att vi integrerar

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6)

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6) TENTAMENSSKRIVNING LUNDS TEKNISKA HÖGSKOLA MATEMATIK ENDIMENSIONELL ANALYS B (FMAA5)/A3 (FMAA) 74 kl. 83 Inga hjälmedel är tillåtna. För att du skall kunna erhålla full oäng skall dina lösningar vara läsvärda

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

Föresläsningsanteckningar Sanno II

Föresläsningsanteckningar Sanno II Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

Föreläsn. anteckn. TMV206-VT13. Vecka 6-7. Egenvärden och Egenvektorer. Kap. 8-9

Föreläsn. anteckn. TMV206-VT13. Vecka 6-7. Egenvärden och Egenvektorer. Kap. 8-9 Föreläsn. Anteckn., Linjär algebra IT VT2013/Genkai Zhang 1 Föreläsn. anteckn. TMV206-VT13. Vecka 6-7. Egenvärden och Egenvektorer. Kap. 8-9 Det tredje huvuda momentet av kursen är egenvektorer/egenvärden

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

P = b) Vad betyder elementet på platsen rad 1 kolumn 3 i matrisen P 319? (2 p)

P = b) Vad betyder elementet på platsen rad 1 kolumn 3 i matrisen P 319? (2 p) Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER ONSDAGEN DEN 1 JUNI 2016 KL 08.00 13.00. ENGLISH VERSION FOLLOWS AFTER THE SWEDISH TEXT Examinator: Jimmy Olsson tel. 790 72 01 Kursansvarig:

Läs mer

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när

Läs mer

LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1

LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra II LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING Lös ekvationssystemet x + y + z 9 x + 4y 3z 3x + 6z 5z med hjälp av Gausselimination Lösning:

Läs mer

Stokastiska Processer

Stokastiska Processer Kapitel 3 Stokastiska Processer Karakteristisk funktion: Den karakteristiska funktionen φ ξ : R n C för en R n -värd s.v. definieras för t R n. φ ξ (t) = E{e iπ(t ξ +...+t nξ n) } = E{e iπtt ξ } Den karakteristiska

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet

Läs mer

Föreläsning 13 Linjär Algebra och Geometri I

Föreläsning 13 Linjär Algebra och Geometri I Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Introduktion till Markovkedjor. Mattias Arvidsson

Introduktion till Markovkedjor. Mattias Arvidsson Introduktion till Markovkedjor Mattias Arvidsson Örebro universitet Institutionen för naturvetenskap och teknik Matematik C, 76 90 högskolepoäng Introduktion till Markovkedjor Mattias Arvidsson December

Läs mer

Kinesiska restsatsen

Kinesiska restsatsen Matematik, KTH Bengt Ek juli 2017 Material till kurserna SF1679 och SF1688, Diskret matematik: Kinesiska restsatsen Vi vet att för varje m Z + och varje a Z, ges alla x Z som uppfyller x a (mod m) av x

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Euklides algoritm för polynom

Euklides algoritm för polynom Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma

Läs mer

ANVISNINGAR TILL INLÄMNINGSUPPGIFTER I TILLFÖRLITLIGHETSTEORI. På inlämningsuppgiften ska alltid namn och elevnummer finnas med.

ANVISNINGAR TILL INLÄMNINGSUPPGIFTER I TILLFÖRLITLIGHETSTEORI. På inlämningsuppgiften ska alltid namn och elevnummer finnas med. ANVISNINGAR TILL INLÄMNINGSUPPGIFTER I TILLFÖRLITLIGHETSTEORI På inlämningsuppgiften ska alltid namn och elevnummer finnas med. Numeriska svar ska ges med fyra decimaler. Detta har att göra med rättningen

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer