Markovprocesser SF1904
|
|
- Ingeborg Eriksson
- för 5 år sedan
- Visningar:
Transkript
1 Markovprocesser SF1904 Johan Westerborn Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3
2 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser i kontinuerlig tid 3 Intensitetsmatris 4 Innbäddade Markovkedjan 5 Absorption Johan Westerborn Markovprocesser (2) Föreläsning 3
3 Förra Föreläsningen Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser i kontinuerlig tid 3 Intensitetsmatris 4 Innbäddade Markovkedjan 5 Absorption Johan Westerborn Markovprocesser (3) Föreläsning 3
4 Diskret Markovkedja Förra Föreläsningen Har hittills pratat om diskreta Markovkedjor {X n ; n = 0, 1, 2,...}. Definerade genom en initialfördelning p (0) och en övergångsmatris P. Intressant fråga är vad som händer efter lång tid. Definitioner att komma ihåg: Genomgångstillstånd Absorberande tillstånd A-kedja Irreducibel delmängd Periodicitet Aperiodiskt tillstånd Sluten delmängd Johan Westerborn Markovprocesser (4) Föreläsning 3
5 Stationär fördelning Förra Föreläsningen Definition (Stationär fördelning, 5.1) En fördelning π = (π 1, π 2,...) är en stationär fördelning till en Markovkedja med övergångsmatris P om Sats (5.1) πp = π π i = 1 i π i 0 för alla i E En Markovkedja med ändligt tillståndsrum har alltid minst en stationär fördelning. Johan Westerborn Markovprocesser (5) Föreläsning 3
6 Förra Föreläsningen Ergodicitet Definition (5.2) En Markovkedja {X n ; n 0} sägs vara ergodisk om en gränsfördelning p ( ) existerar och den är oberoende av startfördelning. Följande sats är en av huvudsatserna i teorin för Markovkedjor Sats (5.2) En ändlig, irreducibel, aperiodisk Markovkedja är ergodisk och dess gränsfördelning är den entydiga, stationära fördelningen. Johan Westerborn Markovprocesser (6) Föreläsning 3
7 Stationär fördelnig Förra Föreläsningen Sats (5.3) En ändlig, irreducibel kedja har en entydlig stationär fördelning π och det gäller att π i = 1 E(T i ) där T i är tiden mellan två besök i tillstånd i. Kvoten π j π i är förväntad tid i tillstånd j mellan två besök i tillstånd i. Johan Westerborn Markovprocesser (7) Föreläsning 3
8 Förra Föreläsningen Ickeändlig Markovkedja En ickeändlig Markovkedja kan också vara ergodisk och ha en stationär fördelning. Sats (5.6) Låt P vara övergångsmatrisen till en irreducibel, aperiodisk Markovkedja. Betrakta följande ekvationssystem, x = (x 1, x 2,...). x = xp x i 0 i = 1, 2,... Då gäller att Markovkedjan är ergodisk och har en stationär fördelning om 0 < i=1 x i < Om lösningen satisfierar i=1 x i = så har kedjan ingen stationär fördelning och är inte ergodisk. Johan Westerborn Markovprocesser (8) Föreläsning 3
9 Förra Föreläsningen Exempel Exempel (5.5) En partikel vandrar på de naturliga talen N = (0, 1, 2,...) och låt den gå ett steg till höger med sannolikhet p och ett steg till vänster med sannolikhet q = 1 p. I punkten 0 stannar partikeln kvar med sannolikhet q. Avgör för vilka värden på p som kedjan är ergodisk och beräkna då den stationära fördelningen. Johan Westerborn Markovprocesser (9) Föreläsning 3
10 Föreläsningsplan Markovprocesser i kontinuerlig tid 1 Förra Föreläsningen 2 Markovprocesser i kontinuerlig tid 3 Intensitetsmatris 4 Innbäddade Markovkedjan 5 Absorption Johan Westerborn Markovprocesser (10) Föreläsning 3
11 Markovprocesser i kontinuerlig tid Introduktion Vi ska nu studera fallet då T = [0, ) men tillståndsrummet är fortfarande diskret E = {0,, 1..., N} eller uppräkneligt E = {0, 1,...}. Definition (6.1) En stokastisk process {X(t), t 0} kallas en (diskret) Markovprocess om P(X(t n+1 ) = i n+1 X(t n ) = i n,..., X(t 0 ) = i 0 ) = P(X(t n+1 ) = i n+1 X(t n ) = i n ), för alla n, alla 0 t 0 <... < t n < t n+1 och alla tillstånd i 0,..., i n, i n+1 E. Johan Westerborn Markovprocesser (11) Föreläsning 3
12 Tidshomogen Markovprocesser i kontinuerlig tid Definition Om P(X(t + s) = j X(s) = i), i, j E inte beror på s så är processen tidshomogen. Vi kan då sätta p ij (t) = P(X(t + s) = j X(s) = i) = P(X(t) = j X(0) = i) och P(t) = (p ij (t)) i,j E. P(t) är övergångsmatris för tid t. p(t) = (p 0 (t), p 1 (t),...) där p i (t) = P(X(t) = i), där p(t) är den absoluta sannolikhetsfördelningen. Johan Westerborn Markovprocesser (12) Föreläsning 3
13 Markovprocesser i kontinuerlig tid Chapman-Kolmogorov Sats (6.1) För alla s, t 0 gäller a) p ij (s + t) = k E p ik(s)p kj (t) b) P(s + t) = P(s)P(t) c) p(s + t) = p(s)p(t) Bevis lämnas som en bra övning. Görs på samma sätt som för diskreta Markovkedjor. Johan Westerborn Markovprocesser (13) Föreläsning 3
14 Markovprocesser i kontinuerlig tid Reguljär Markovprocess Definition (6.2) En Markovprocess kallas reguljär om den med sannolikhet 1 gör högst ändligt många hopp under ändliga tidsintervall och med sannolikhet 1 ligger kvar en positiv tid i ett tillstånd den gått in i. Johan Westerborn Markovprocesser (14) Föreläsning 3
15 Markovprocesser i kontinuerlig tid Exponentialfördelningen Tiden i ett tillstånd är exponentialfördelad Låt T i vara en stokastisk variabel som är tiden mellan hopp i 1 och i i en Markovprocess. Då gäller enligt Markovegenskapen att P (T i > h + s T i > s) = P (T i > h). Fördelningen som uppfyller detta är Exponentialfördelningen. Vi drar slutsatsen att hopptiden i en tidshomogen Markovprocess är Exponentialfördelade. Sats Låt T i Exp(λ i ) för i = 1,..., n. Då är T = min(t 1,..., T n ) exponentialfördelad med intensitet λ = n i=1 λ i. Johan Westerborn Markovprocesser (15) Föreläsning 3
16 Intensitetsmatris Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser i kontinuerlig tid 3 Intensitetsmatris 4 Innbäddade Markovkedjan 5 Absorption Johan Westerborn Markovprocesser (16) Föreläsning 3
17 Intensitetsmatris Intensitetsmatrisen Definition Antag att p ij (t) är två gånger differntierbar från höger i nollen, dvs. det existerar q ij R så att p ij (h) p ij (0) q ij = lim. h 0 + h Matrisen Q med elementet q ij på plats (i, j) kallas för intensitetsmatrisen. Exempel (Exponentialfördelningen igen) Om en Markovprocess hoppar från tillstånd 0 till 1 efter en Exp(λ) fördelad tid. Då är q 01 = λ. Johan Westerborn Markovprocesser (17) Föreläsning 3
18 Intensitetsmatris Intensitetsmatrisen Definition Antag att p ij (t) är två gånger differntierbar från höger i nollen, dvs. det existerar q ij R så att p ij (h) p ij (0) q ij = lim. h 0 + h Matrisen Q med elementet q ij på plats (i, j) kallas för intensitetsmatrisen. Exempel (Exponentialfördelningen igen) Om en Markovprocess hoppar från tillstånd 0 till 1 efter en Exp(λ) fördelad tid. Då är q 01 = λ. Johan Westerborn Markovprocesser (17) Föreläsning 3
19 Intensitetsmatris Tolkning av q ij Tillsammans med tidshomogeniteten får vi nu, för alla t 0 och i j, P(X(t + h) = j X(t) = i) = q ij h + o(h) q ij kallas för övergångsintensiteten från tillstånd i till j. Vi har också att P(X(t + h) i X(t) = i) = j i P(X(t + h) = j X(t) = i) = j i (q ij h + o(h)) = q i h + o(h) Där q i kallas för uthoppsintensiteten, q i = j i q ij Johan Westerborn Markovprocesser (18) Föreläsning 3
20 Intensitetsmatris Tolkning av q ii Observera också att p ii (h) = P(X(h) = i X(0) = i) = 1 P(X(h) i X(0) = i) Vi får då att = 1 (q i h + o(h)) = 1 q i h + o(h). p q ii = lim ii (h) 1 h 0 + h q = lim i h + o(h) h 0 + h = q i Vi har att q ii = q i. Vi drar slutsatsen att radsumman i Q är noll. Johan Westerborn Markovprocesser (19) Föreläsning 3
21 Intensitetsmatris Sammanfattning Vi kan tolka en Markovprocess som att när vi kommer till ett tillstånd i startar vi exponentialfördelade variabler T ij Exp(q ij ), j i. Vi hoppar till det tillstånd j som har T ij T il, l i Formeln q i = j i q ij är naturlig då tiden till ett hopp är exponentialfördelad och minimum av exponentialfördelade variabler är exponentialfördelad med intensitet som är summan av intensiteterna. Tiden i ett tillstånd är alltså Exp(q i ) fördelad. Johan Westerborn Markovprocesser (20) Föreläsning 3
22 Intensitetsmatris Tillförlitlighet Exempel (Tillförlitlighet) En maskin består av två komponenter, A och B som är parallellkopplade. De går sönder oberoende av varandra med intenistet λ. När en komponent är trasig lagas den med intensitet µ. Man har tillgång till två reperatörer så alla komponenter kan repareras parallellt. Man är intresserad av att veta om systemet fungerar eller ej. Ställ upp systemet, bestäm E och Q. A B Johan Westerborn Markovprocesser (21) Föreläsning 3
23 Intensitetsmatris Bakåt och framåt ekvationerna I matrisform kan vi skriva intensitetsmatrisen som Q = lim h 0 + P(h) I h Vi kan då skriva upp följande ekvationer P (t) = P(t)Q = QP(t) p (t) = p(0)p(t)q = p(t)q Första ekvationerna kallas för Kolmogorovs framåt och bakåt ekvationer. De har lösningen P(t) = exp(qt) = (Qt) k k=0 Matrisen Q tillsammans med p(0) karakteriserar Markovprocessen. k! Johan Westerborn Markovprocesser (22) Föreläsning 3
24 Föreläsningsplan Innbäddade Markovkedjan 1 Förra Föreläsningen 2 Markovprocesser i kontinuerlig tid 3 Intensitetsmatris 4 Innbäddade Markovkedjan 5 Absorption Johan Westerborn Markovprocesser (23) Föreläsning 3
25 Uthoppsmatrisen Innbäddade Markovkedjan Låt t 0, t 1,... vara tidpunkterna då Markovprocessen {X(t); t 0} med intensitetsmatris Q hoppar. Vi låter { X n ; n = 0, 1,...} vara en process där X n = X(t n ). Då är X n en Markovkedja med övergångsmatris P. Där övergångssannolikheterna är proportionella mot intensiteterna. Bra övning att visa följande: Låt T 1 Exp(λ 1 ) och T 2 Exp(λ 2 ) då är P(T 1 < T 2 ) = λ 1 λ 1 + λ 2 Johan Westerborn Markovprocesser (24) Föreläsning 3
26 Tillförlitlighet forts. Exempel (Tillförlitlighet) Innbäddade Markovkedjan En maskin består av två komponenter, A och B som är parallellkopplade. De går sönder oberoende av varandra med intenistet λ. När en komponent är trasig lagas den med intensitet µ. Man har tillgång till två reperatörer så alla komponenter kan repareras parallellt. Man är intresserad av att veta om systemet fungerar eller ej. Bestäm P. A B Johan Westerborn Markovprocesser (25) Föreläsning 3
27 Innbäddade Markovkedjan Att simulera en Markovprocess Med den inbäddade Markovkedjan är det enkelt att simulera en Markovprocess på följande sätt: Låt X(0) = X(0) i med sannolikhet p i (0); Låt T 0 0; for n = 1, 2,... do Låt Y n Exp(q Xn 1 ); end Låt T n T n 1 + Y n ; Låt X n = X(T n ) j med sannolikhet q Xn 1,j /q Xn 1 ; Där X(t) är Markovprocessen, X n är den innbäddade Markovkedjan och T n är tiden för hopp n. Johan Westerborn Markovprocesser (26) Föreläsning 3
28 Absorption Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser i kontinuerlig tid 3 Intensitetsmatris 4 Innbäddade Markovkedjan 5 Absorption Johan Westerborn Markovprocesser (27) Föreläsning 3
29 Absorption Absorption i Markovprocesser Ett absorberande tillstånd är ett tillstånd från vilket man ej kan gå till ett annat tillstånd. Det betyder att q ij = 0 för alla j i, vilket också betyder att q i = q ii = 0 för ett absorberande tillstånd i (rad av nollor i Q). Begreppet A-kedja, genomgångstillstånd defineras som i Markovkedjorna. Vi inför som i Markovkedje fallet, a ij = P(absorberas i tillstånd j X(0) = i) T i =tid till absorption givet start i tillstånd i och t i = E[T i ]. Vi kan beräkna dessa på samma sätt som i Markokedjorna om vi inser att förväntad tid i tillstånd i är 1 q i och använder den innbäddade Markovkedjan. Johan Westerborn Markovprocesser (28) Föreläsning 3
30 Absorption Absorption i Markovprocesser Sats (6.5) Låt a ij vara absorptionssannolikheterna och t i vara förväntad tid till absorption i en A-kedja med intensitetsmatris Q. Då gäller för alla absorberande tillstånd j a ij = q ij q i + t i = 1 q i + k G\{i} k G\{i} där G är alla genomgångstillstånd. q ik q i a kj, q ik q i t k, i G i G Bevisas på samma sätt som för Markovkedjor. Johan Westerborn Markovprocesser (29) Föreläsning 3
31 Tillförlitlighet forts. Exempel (Tillförlitlighet) Absorption En maskin består av två komponenter, A och B som är parallellkopplade. De går sönder oberoende av varandra med intenistet λ. När en komponent är trasig lagas den med intensitet µ. Man har tillgång till två reperatörer så alla komponenter kan repareras parallellt. Man är intresserad av att veta om systemet fungerar eller ej. Antag att systemet börjar med två fungerande komponenter, hur lång tid förväntar vi oss att det tar innan systemet slutar fungera? A B Johan Westerborn Markovprocesser (30) Föreläsning 3
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 30 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 4 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser 25 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer
b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 1 Markovprocesser Johan Westerborn Markovprocesser (1) Föreläsning 1 Föreläsningsplan 1 Kursinformation 2 Stokastiska processer 3 Betingade
Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori. Jan Grandell
Föreläsningsanteckningar i kurs 5B1506 Markovprocesser och köteori Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas
** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03
Markovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn
TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
Stokastiska processer
Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna
P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1
Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen
TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL
Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se
Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Tentamen i FMS180/MASC03 Markovprocesser
Matematisk statistik Matematikcentrum Lunds Universitet Tentamen i FMS80/MASC03 Markovprocesser 009-05-5 Lösningsförslag. Följande är en möjlighet. 6 5 3 4 Här är tillstånden, och 3 transienta, tillstånd
Fö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Stokastiska processer och simulering I 24 augusti
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016
3 Diskreta Markovkedjor, grundläggande egenskaper Grundläggande begrepp Fördelningen för X n Absorption...
Förord Detta kompendium behandlar grunderna för diskreta Markovprocesser i diskret och kontinuerlig tid. Ambitionen har varit att, åtminstone då tillståndsrummet är ändligt, ge en så matematisk fullständig
Markovkedjor. Patrik Zetterberg. 8 januari 2013
Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)
INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH
Läs detta först: INTRODUKTION TILL MARKOVKEDJOR av Göran Rundqvist, KTH Det här kompendiet är avsett som en introduktion till kompendiet av Enger och Grandell. Det är absolut inget fel på det officiella
Stokastiska processer och simulering I 24 maj
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14
P =
Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:
P = b) Vad betyder elementet på platsen rad 1 kolumn 3 i matrisen P 319? (2 p)
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER ONSDAGEN DEN 1 JUNI 2016 KL 08.00 13.00. ENGLISH VERSION FOLLOWS AFTER THE SWEDISH TEXT Examinator: Jimmy Olsson tel. 790 72 01 Kursansvarig:
Exempel. Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V) mulet (M) regn (R)
Exempel Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V mulet (M regn (R Exempel Vackert idag vackert imorgon sannolikheten 0.6 Vackert idag mulet imorgon sannolikheten
Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Grafer och grannmatriser
Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,
Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Poisson Drivna Processer, Hagelbrus
Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer
Föreläsning 9, FMSF45 Markovkedjor
Föreläsning 9, FMSF45 Markovkedjor Stas Volkov 2017-10-10 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F9: Markovkedjor 1/1 Stokastisk process (rep) En stokastisk process {X(t), t T} är en följd av stokastiska
Utdrag ur TAMS15: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79
Utdrag ur TAMS5: Matematisk statistik I, grundkurs Extra kursmaterial för TAMS79 John M. Noble, Institute of Applied Mathematics, University of Warsaw, ul. Banacha, -97 Warszawa Revised: J. Thim ii Innehåll
Tiden i ett tillstånd
Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat
e x/1000 för x 0 0 annars
VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN
Om Markov Chain Monte Carlo
Om Markov Chain Monte Carlo Gunnar Englund Matematisk statistik KTH Ht 2001 1 Inledning Markov Chain Monte Carlo MCMC är en modern teknik att simulera komplicerade fördelningar som har fått stora tillämpningar
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 1 1 Stokastiska processer Definition 1.1 En stokastisk process är en familj {X(t);t T } (kan även skrivas {X
Tentamen i matematisk statistik, TAMS15/TEN (4h)
LINKÖPINGS UNIVERSITET Kurskod: TAMS1 Matematiska institutionen Provkod: TEN1 Johan Thim Datum: 2018-12-42 Institution: MAI Tentamen i matematisk statistik, TAMS1/TEN1 2018-12-42 (4h Hjälpmedel är: miniräknare
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A
Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och
Konvergens och Kontinuitet
Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R
Tentamen LMA 200 Matematisk statistik, data/elektro
Tentamen LMA 00 Matematisk statistik, data/elektro 039 Tentamen består av åtta uppgiter motsvarande totalt 50 poäng. Det krävs minst 0 poäng ör betyg 3, minst 30 poäng ör 4 och minst 40 ör 5. Examinator:
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3
Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 7 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.
Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag
Markovkedjor i kontinuerlig tid med tillämpning för motorproteiner. Jonathan Fagerström, Avhandling Pro Gradu
Markovkedjor i kontinuerlig tid med tillämpning för motorproteiner Jonathan Fagerström, 35708 Avhandling Pro Gradu Fakultetsområdet för naturvetenskaper och teknik Matematik Åbo Akademi 2017 1 Sammanfattning
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)
SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig
Bayesianska numeriska metoder II
Bayesianska numeriska metoder II T. Olofsson Gibb's sampling Vi har sett att en viktig teknik vid Bayesiansk inferens är s.k marginalisering vilket, för kontinuerliga variabler, innebär att vi integrerar
1 Stokastiska processer. 2 Poissonprocessen
1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen
Om skattningar av sannolikheter för extrema händelser
Om skattningar av sannolikheter för extrema händelser Examensarbete för kandidatexamen i matematik vid Göteborgs universitet Amanda Hårsmar Jari Martikainen Martin Rensfeldt Institutionen för matematiska
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
att genomföra laborationen) kan du sedan spara filen med ev. ändringar på ditt eget konto med Save As, såsom anges i introduktionslaborationen.
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3: SIMULERING AV MARKOVPROCESSER MED TILLFÖRLITLIGHETSTILLÄMPNING MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser Denna laboration
40 5! = 1, ! = 1, Om man drar utan återläggning så kan sannolikheten beräknas som 8 19
Petter Mostad Tillämpad matematik och statistik Matematiska Vetenskaper, Chalmers Lösninngsförslag för MVE/MSG8 Matematisk statistik och diskret matematik Tenta Januari 27, 8: - 2:. Frågan är formulerat
Stokastiska Processer
Kapitel 3 Stokastiska Processer Karakteristisk funktion: Den karakteristiska funktionen φ ξ : R n C för en R n -värd s.v. definieras för t R n. φ ξ (t) = E{e iπ(t ξ +...+t nξ n) } = E{e iπtt ξ } Den karakteristiska
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Övningstentamen i matematisk statistik
Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Matematisk statistik 9 hp, HT-16 Föreläsning 16: Markovkedjor
Repetition Processer Markovkedjor Tillstånd Ex Matematisk statistik 9 hp, HT-16 Föreläsning 16: Markovkedjor Joakim Lübeck + Anna Lindgren 5+6 december, 2016 Anna Lindgren - anna@maths.lth.se FMS012/MASB03
Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor
Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor Inledning I del 1 av denna laboration utnyttjas Matlab och Simulink för att simulera polplaceringsbaserad regulatordesign för
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
Föresläsningsanteckningar Sanno II
Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
DEL I 15 poäng totalt inklusive bonus poäng.
Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2: FÖRGRENINGSPROCESSER MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser Syftet med denna laboration är att du skall bli mer
Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =
Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,
SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
Informationsteori. Repetition Kanalkapaciteten C. Repetition Källkodhastigheten R 2. Repetition Kanalkodhastigheten R 1. Huffmans algoritm: D-när kod
Informationsteori Repetition Kanalkapaciteten C Källkodare Kanalkodare X Kanal Mats Cedervall Mottagare vkodare Kanalavkodare Y Kanalkodningssatsen C =supi(x; Y ) p(x) Informationsteori, fl#7 1 Informationsteori,
1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk
Statistiska metoder för säkerhetsanalys
F9: Intensiteter 3 september 213 Egenskaper Återstående livslängd Storm Poissonprocess (igen) Händelsen A inträffar enligt en Poissonprocess med intensitet l. N A (t) = antal gånger A inträffar i (, t)
Föreläsning 8, Matematisk statistik Π + E
Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson
Finansiell statistik FÖRELÄSNING 11
Finansiell statistik FÖRELÄSNING 11 Slumpvandring Brownsk rörelse 4 maj 2011 14:52 Pär och Pål Pär och Pål spelar ett hasardspel mot varandra upprepade gånger. Pär vinner = Pål betalar en krona. Pål vinner
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)
Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till