Statistiska metoder för säkerhetsanalys
|
|
- Per-Olof Mattsson
- för 8 år sedan
- Visningar:
Transkript
1 F9: Intensiteter 3 september 213
2 Egenskaper Återstående livslängd Storm Poissonprocess (igen) Händelsen A inträffar enligt en Poissonprocess med intensitet l. N A (t) = antal gånger A inträffar i (, t) N A (t) Po(lt), lt (lt)k P(N A (t) = k) = e, k =, 1, 2,... k! Tiden fram till första händelsen = T är exponentialfördelad: F T (t) = P(T t) = 1 P(T > t) = 1 P(N A (t) = ) lt (lt) = 1 e = 1 e lt,! f T (t) = F T (t) = le lt, t > dvs en exponentialfördelning med väntevärde 1/l.
3 Egenskaper Återstående livslängd Storm Poissonprocess (forts) N A (t) t t t t S 1 S 2 S 3 S 4 T = T 1 T 2 T 3 Tiderna T 1, T 2,... mellan händelserna är oberoende och exponentialfördelade med väntevärde 1/l. T 4 t
4 Egenskaper Återstående livslängd Storm Poissonprocess: Återstående livslängd Antag att T > s (dvs tiden fram till första händelsen är större än s). Vad är då sannolikheten att T > s + t (dvs ingen händelse i nästa t enheter). P(T > s + t T > s) = P(T > s + t T > s) P(T > s) = e l(s+t) e ls = P(T > t) = = e l(s+t)+ls = e lt P(T > s + t) P(T > s) Den återstående väntetiden är lika stor oavsett hur länge vi redan väntat!
5 Egenskaper Återstående livslängd Storm Ex: Storm (igen) Under perioden hade Sverige 26 individuella stormar där skadorna översteg en million m 3 skog. Man har noterat tidsperioden (dagar) mellan dessa svåra stormar: Hypotesen H : Tidpunkterna mellan stormarna är exponentialfördelade testades tidigare med ett q 2 -test och kunde inte förkastas. Om stormarna kommer som en poissonprocess med intensitet l så är T = tiden mellan två stormar exponentialfördelad med väntevärde 1/l. Medelvärdet för de 25 tidsperioderna är 1/l = t = 173 dagar så l = 1/ t = 1/173 =.93 (dagar 1 ).
6 Egenskaper Återstående livslängd Storm Ex: Storm (forts) Hur stor är sannolikheten att det dröjer mer än ett år mellan två stormar? P(T > 365) e l 365 = e 365/173 =.71. Hur stor är sannolikheten att det dröjer mer än två år mellan två stormar? P(T > 365 2) e l 73 = e 73/173 =.51. Antag att vi väntat ett år men det har inte kommit någon storm. Hur stor är sannolikheten att det kommer att dröja minst ett år till innan nästa storm? P(T > T > 365) = e l (73 365) = e 365/173 =.71. P(T > 73) P(T > 365) =
7 Generaliseringar av Poissonprocessen Låt händelserna ske i planet. Låt intensiteten vara beroende av tiden (dvs inte konstant). Specialstudera tiden fram till första händelsen. Livslängdsprocess Studera tiden fram till död. död levande T t
8 Felintensitetsfunktion Överlevnadsfunktion för T: R(t) = P(T > t) = 1 F(t) = e L(t) Kumulativ felintensitetsfunktion för T: L(t) = ln R(t) = t l(u) du Felintensitetsfunktion för T: l(t) = dl(t) = f(t) dt 1 F(t) Återstående livslängd: P(T > s + t T > s) = s+t = e l(u) du e s = e l(u) du P(T > s + t) P(T > s) = R(s + t) R(s) s+t s l(u) du = e (L(s+t) L(s)) = e L(s+t) e L(s) =
9 Tolkning av l(t) Man kan visa att dvs, för små värden på t, är l(s) = lim t P(T s + t T > s) t l(s) t P(en komponent som är s tidsenheter gammal går sönder inom t tidsenheter) Olika typer av felintensiteter Växande (increasing failure rate). Enheterna slits. Konstant (constant failure rate). Enheterna är oförändrade. Avtagande (decreasing failure rate). Enheterna blir starkare.
10 Både avtagande och växande: Sveriges befolkning (SCB) 3 25 Män Kvinnor Antal döda per 1 personer Ålder Log skala Män Kvinnor Antal döda per 1 personer Ålder
11 Ex: Storm (forts) Vi har att T = tiden till nästa storm är exponentialfördelad med väntevärde 1/l, dvs med fördelningsfunktion överlevnadsfunktion kumulativ felintensitetsfunktion och felintensitetsfunktion F(t) = P(T t) = 1 e lt, R(t) = 1 F(t) = e lt, L(t) = ln R(t) = ln e lt = lt, l(t) = dl(t) dt = d lt = l (konstant). dt
12 Ex: Storm (forts) Empirisk fördelning Fördelningsfunktion F(t) Överlevnadsfunktion R(t) Tid mellan stormar 4 Λ(t) x λ(t)
13 Exempel: Kullager I ett experiment studerade man livstiden (miljoner rotationer) hos kullager. Man fick 22 observationer Empirisk fördeln Exponential Rayleigh livslängd En Rayleighfördelning tycks passa bra till de observerade livstiderna. Parametern i Rayleighfördelningen skattas till a = 81.3.
14 Ex: Kullager (forts) (a) Bestäm felintensitetsfunktionen. (b) Hur stor är sannolikheten att ett kullager klarar minst 6 miljoner rotationer? (c) Antag att ett kullager används i 6 miljoner rotationer. Vad är sannolikheten att den klarar ytterligare 6 miljoner rotationer? (d) Antag att ett system innehåller fyra kullager av den studerade typen. Systement fungerar så länge som alla kullager är ok. Beräkna systemets felintensitet. Intensiteten för kullager att gå sönder är inte konstant (i så fall hade T varit exponentialfördelad). Den beror på förslitning och bör alltså vara växande. Men hur?
15 Ex: Kullager (forts) (a) Bestäm felintensitetsfunktionen. En Rayleigh-fördelning med parameter a har fördelningfunktion F(t) = P(T t) = 1 e t2 /a 2, överlevnadsfunktion R(t) = 1 F(t) = e t2 /a 2, kumulativ felintensitetsfunktion L(t) = ln R(t) = ln e t2 /a 2 = t 2 /a 2, och felintensitetsfunktion l(t) = dl(t) dt = d dt t 2 a 2 = 2t a 2 (växande).
16 Ex: Kullager (forts) Empirisk fördeln Fördelningsfkn F(t) Överlevnadsfkn R(t) livslängd Λ(t) λ(t)
17 Ex: Kullager (forts): (b) Hur stor är sannolikheten att ett kullager klarar minst 6 miljoner rotationer? P(T > 6) = R(6) = e 62 /a 2 e 62 / =.58 (c) Antag att ett kullager används i 6 miljoner rotationer. Vad är sannolikheten att den klarar ytterligare 6 miljoner rotationer? P(T > T > 6) = P(T > 12) P(T > 6) = e 122/a2 e 62 /a 2 = e ( )/a 2 e ( )/ =.2
18 Ex: Kullager (forts): (d) Antag att ett system innehåller fyra kullager av den studerade typen. Systement fungerar så länge som alla kullager är ok. Beräkna systemets felintensitet. Vi har T i = livslängd hos kullager i, i = 1, 2, 3, 4, och T = livslängd hos systemet = min(t 1, T 2, T 3, T 4 ). R(t) = P(T > t) = P(T 1 > t, T 2 > t, T 3 > t, T 4 > t) = P(T 1 > t) P(T 2 > t) P(T 3 > t) T 4 > t) ( = e t2 /a 2) 4 = e 4t 2 /a 2, L(t) = ln R(t) = 4t 2 /a 2, l(t) = d dt 4t 2 a 2 = 8t a 2 = 4 2t a 2 = 4 l i(t) Systemet har fyra gånger så hög felintensitet som ett kullager.
19 Ex: Kullager (forts) 1.8 Överlevnadsfkn för 1 kullager Överlevnadsfunktion för systemet livslängd 2 1 Λ(t) för 1 kullager Λ(t) för systemet λ(t) för 1 kullager λ(t) för systemet
20 Exempel: Alarmsystem I ett elektroniskt alarmsystem kan fel uppstå p.g.a. åsknedslag. Från insamlade data och erfarenheter av liknande system har man funnit att fördelningen för systemets funktionstid T (uttryckt i dagar) ges av fördelningsfunktionen F T (t) = 1 e.1t, t (a) Bestäm felintensiteten l(t). (b) Beräkna sannolikheterna att systemet fungerar längre än en vecka (7 dagar), en månad (3 dagar), 1 dagar. (c) Man har installerat ett skydd mot åsknedslag. Emellertid måste dock hänsyn tas till att detta skydd åldras; antag därför en felintensitet på systemet l(t) =.1t. Är detta system säkrare?
21 Ex: Alarmsystem (forts) (a) Bestäm felintensiteten l(t). F(t) = 1 e.1t R(t) = 1 F(t) = e.1t L(t) = ln R(t) =.1t l(t) = dl(t) dt Konstant, dvs exponentialfördelning! =.1 (b) Beräkna sannolikheterna att systemet fungerar längre än en vecka (7 dagar), en månad (3 dagar), 1 dagar. P(T > 7) = R(7) = e.1 7 =.932, P(T > 3) = R(3) = e.1 3 =.741, P(T > 1) = R(1) = e.1 1 =.368.
22 Ex: Alarmsystem (forts) (c) Man har installerat ett skydd mot åsknedslag. Emellertid måste dock hänsyn tas till att detta skydd åldras; antag därför en felintensitet på systemet l(t) =.1t. Är detta system säkrare? P(T > t) = e L(t) = e t l(u) du = e t = e [.1u2 /2] t = e.1t2 /2, P(T > 7) = e.1 72 /2 =.976, P(T > 3) = e.1 32 /2 =.638, P(T > 1) = e.1 12 /2 =.67. Njä, inte på längre sikt..1u du
23 Ex: Alarmsystem (forts) Överlevnadsfunktion utan åskskydd Överlevnadsfunktion med åskskydd Livslängd (dagar) Λ(t) utan åskskydd Λ(t) med åskskydd Livslängd (dagar).6 λ(t) utan åskskydd.4 λ(t) med åskskydd Livslängd (dagar)
Statistiska metoder för säkerhetsanalys
1 / 14 Statistiska metoder för säkerhetsanalys F2: Händelseströmmar och Poissonprocesser Definition Intensitet Exempel 2 / 14 Händelseström Händelsen A inträffar vid de okända tidpunkterna S 1, S 2,...
Läs merFÖRELÄSNING 4:
FÖRELÄSNING 4: 26-4-9 LÄRANDEMÅL Poissonfördelning Kontinuerliga slumpvariabler Kontinuerlig uniform fördelning Exponentialfördelning Samla in data Sammanställ data Gissa modell för datan Testa modellen
Läs mer1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
Läs merStatistiska metoder för säkerhetsanalys
F13: Kvantiler och extremvärden Lysrör Extremvärden Vi hade tidigare (Kedja) att om X i var oberoende och Rayleigh-fördelade så blev Y = min(x 1,..., X n ) också Rayleighfördelad. Vad händer med Z = max(x
Läs merLösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik
Sida 1 Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik 3.7, 3.11 Ympning används för att få en planta att växa på ett rotsystem tillhörande en annan växt. Elementarsannolikheterna
Läs merWeibullanalys. Maximum-likelihoodskattning
1 Weibullanalys Jan Enger Matematisk statistik KTH Weibull-fördelningen är en mycket viktig fördelning inom tillförlitlighetsanalysen. Den används ofta för att modellera mekaniska komponenters livslängder.
Läs merStatistiska metoder för säkerhetsanalys
F11: Poissonprocesser och tillförlitlighet Egenskaper Träd Test London Poissonprocesser i planet Vi har ett område B. Låt N(B) vara antalet händelser som inträffar i område B. Om det gäller att två eller
Läs merP =
Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:
Läs merFöreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Läs merBlandade problem från elektro- och datateknik
Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna
Läs merStatistiska metoder för säkerhetsanalys
F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den
Läs merTMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Läs merPROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Läs merBlandade problem från maskinteknik
Blandade problem från maskinteknik Sannolikhetsteori (Kapitel 1-7) M1. Vid tillverkning av en viss maskintyp får man spiralfjädrar från tre olika tillverkare. Varje dag levererar tillverkare A 100 fjädrar,
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Läs merStatistiska metoder för säkerhetsanalys
F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt
Läs merhistogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Läs merÖvning 1. Vad du ska kunna efter denna övning. Problem, nivå A
Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Läs mer0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Läs merÖvning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.
Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen
Läs merFöreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
Läs merTentamensskrivning i stokastik MAGB64, 7.5 ECTS den 8 juni 2012 kl 14 19
Karlstads universitet matematik Peter Mogensen Tentamensskrivning i stokastik MAGB64, 7.5 ECTS den 8 juni 2012 kl 14 19 Hjälpmedel: Godkänd räknare och Mathematics Handbook Beta. Jourtelefon: 0733141592
Läs merFö relä sning 2, Kö system 2015
Fö relä sning 2, Kö system 2015 Vi ska börja titta på enskilda kösystem som ser ut på följande sätt: Det kan finnas en eller fler betjänare och bufferten kan vara ändlig eller oändlig. Om bufferten är
Läs merFöreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Läs merTiden i ett tillstånd
Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat
Läs merSF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merSimulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)
Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall
Läs merLärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Läs merVåra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Läs merhistogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
Läs merPoisson Drivna Processer, Hagelbrus
Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer
Läs merUppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Läs merFördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
Läs merVi tittar också på Makehams fördelning som är den mest tillämpade livslängdsmodellen i Sverige. Historia om livslängdstabeller 2
Abstract Den här föreläsningen introducerar en stokastisk modell för livslängder. Speciellt definierar vi livslängd, fördelningsfunktion, dödlighetsintensitet och överlevelsefunktion. Vi tittar också på
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 Gripenberg I1. Vi antar att antalet telefonsamtal som kommer till ett servicenummer under en tidsperiod med längden
Läs merTENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL
Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se
Läs merDemonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn
Läs merTAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010
TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 1 1 Stokastiska processer Definition 1.1 En stokastisk process är en familj {X(t);t T } (kan även skrivas {X
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Läs merUppgift 2) Datum: 23 okt TENTAMEN I MATEMATIK OCH MATEMATISK STATISTIK, kurskod 6H3000
Datum: okt TENTAMEN I MATEMATIK OCH MATEMATISK STATISTIK, kurskod 6H Moment: TEN ( Matematisk Statistik ) Lärare: Armin Halilovic Skrivtid: 8:5-:5 Införda beteckningar skall förklaras och definieras. Resonemang
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Läs merGamla tentamensuppgifter i stokastik
Karlstads universitet matematik Peter Mogensen Gamla tentamensuppgifter i stokastik Hjälpmedel: Godkänd räknare och utdelade formelblad OBS Motivera lösningarna i rimlig omfattning. Exakta svar skall helst
Läs merMatematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs
Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler
Läs merMarkovprocesser SF1904
Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser
Läs merMer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
Läs merNågra extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs merIntroduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
Läs merDatorövning 3 Bootstrap och Bayesiansk analys
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-17 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på
Läs merUppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Läs merSF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
Läs merIntegration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log.
Lektion 13, Flervariabelanals den 15 februari 2 15.1.2 Skissera vektorfältet och bestäm dess fältlinjer. F, = e + e I varje punkt, har vektorfältet en vektor med komponenter,, d.v.s. vektorn utgående från
Läs merTENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL
Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merProblemsamling i Sannolikhetsteori
Problemsamling i Sannolikhetsteori till An Intermediate Course in Probability av Allan Gut Sammanställd av Harald Lang 22/5-05 Kapitel 0 (Introduction) Man har ett seriesystem med två enheter som går sönder
Läs mer40 5! = 1, ! = 1, Om man drar utan återläggning så kan sannolikheten beräknas som 8 19
Petter Mostad Tillämpad matematik och statistik Matematiska Vetenskaper, Chalmers Lösninngsförslag för MVE/MSG8 Matematisk statistik och diskret matematik Tenta Januari 27, 8: - 2:. Frågan är formulerat
Läs merb) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 13:E AUGUSTI 2018 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlenko, 08-790 84 66 Examinator
Läs merDiskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Lennart
Läs mer1 Stokastiska processer. 2 Poissonprocessen
1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen
Läs merVäntevärde och varians
TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som
Läs merLaboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merUppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)
Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och
Läs merKapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II
Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs
Läs merNågra kontinuerliga fördelningar, felfortplantning
Några kontinuerliga fördelningar, felfortplantning Några kontinuerliga fördelningar Kontinuerlig fördelning: Endast intervall kan ges sannolikhet - - Det är fullständigt meningslöst att leta efter sannolikheten
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik
Läs merANVISNINGAR TILL INLÄMNINGSUPPGIFTER I TILLFÖRLITLIGHETSTEORI. På inlämningsuppgiften ska alltid namn och elevnummer finnas med.
ANVISNINGAR TILL INLÄMNINGSUPPGIFTER I TILLFÖRLITLIGHETSTEORI På inlämningsuppgiften ska alltid namn och elevnummer finnas med. Numeriska svar ska ges med fyra decimaler. Detta har att göra med rättningen
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merTentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:
Läs merP(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2
Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett
Läs merSTATISTISKA INSTITUTIONEN Jakob Bergman
LUNDS UNIVERSITET STATISTISK TEORI STATISTISKA INSTITUTIONEN STAB0 Jakob Bergman 008-0-08 Tentamen i statistisk teori lördagen den januari 008. Tillåtna hjälpmedel: Körner: Tabeller och formler för statistiska
Läs merTentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE300 Sannolikhet, statistik och risk 2015-08-18 kl. 8.30-13.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 031-7723546 Hjälpmedel:
Läs mer1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merLösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013
Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013 Då detta skrivs är tentorna inte färdigrättade, det tar väldig tid och blir nog inte klart före helgen (jag har annat också), men jag har
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del I G. Gripenberg Aalto-universitetet 26 januari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och statistik
Läs merLINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Läs merVeckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merMatematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se
Läs mer1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.
Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig
Läs merNedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):
EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer
Läs merDatorövning 3 Bootstrap och Bayesiansk analys
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika
Läs merMatematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merMatematisk statistik TMS063 Tentamen
Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,
Läs merDatorövning 6 Extremvärden och Peak over Threshold
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 6 Extremvärden och Peak over Threshold I denna datorövning ska vi använda mätningarna
Läs mer