1 Stokastiska processer. 2 Poissonprocessen

Storlek: px
Starta visningen från sidan:

Download "1 Stokastiska processer. 2 Poissonprocessen"

Transkript

1 1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen med X n, d.v.s. processen är en följd av stokastiska variabler). Oftast är tiden också verklig tid. En stokastisk process kan också ses som en slumpmässig kurva eller funktion. Ett tredje sett att se på saken är att en stokastisk process är en samling stokastiska variabler, indexerade av en parameter kallad tiden. Exempel: X(t) = temperaturen vid tiden t. Kontinuerlig tid, X(t) kontinuerlig. X n = medeltemperaturen dag n. Diskret tid, X n kontinuerlig. X n = antal mål lag L gör i match n. Diskret tid, X n diskret. X(t) = antal e-mejl jag fått fram tills tid t. Kontinuerlig tid, X(t) diskret. 2 Poissonprocessen Poissonprocessen är en diskret stokastisk process i kontinuerlig tid. Poissonprocessen räknar antalet händelser som inträffat från tid 0 tills tid t, där händelser inträffar oberoende av varann. För att få en entydig defintion behövs ytterligare antaganden. Heuristisk definition: Anta att det förväntade antalet händelser under tiden t är λ t. Anta att händelser inträffar oberoende av varann, och helt slumpmässigt (i betydelsen att givet att det inträffat k st. händelser fram tills tid t, så är tidpunkterna då händelserna inträffade oberoende och likformigt fördelade på intervallet (0, t)). Då är X(t) = antalet händelser som inträffat fram tills tid t, en Poissonprocess med intensitet λ. Formell definition: Poissonprocessen är den heltalsvärda stokastiska processen {X(t), t 0}, som uppfyller 1. X(t) har oberoende ökningar. 2. Om h > 0, gäller P (X(t + h) X(t) = 1) = λh + o(h). 3. Om h > 0, gäller P (X(t + h) X(t) 2) = o(h). 1. betyder att, om t 1 < t 2 t 3 < t 4, så är X(t 2 ) X(t 1 ) (= ökningen i intervallet (t 1, t 2 )) och X(t 4 ) X(t 3 ) (= ökningen i intervallet (t 3, t 4 )) oberoende. I 2. och 3. är o(h) sådan att o(h)/h 0 när h 0. Alltså betyder 2. att P (X(t+h) X(t) = 1) λh då h är litet, och 3. att (X(t+h) X(t) 2) 0 då h är litet. Trots att Poissonprocessen i viss mening är den enklaste processen, fungerar den väldigt bra som modell i många tillämpningar. Exempel på situationer där Poissonprocessen framgångsrikt används som modell. 1. Telefonsamtal som anländer till en växel. 2. Olyckstillbud i ett kärnkraftverk. 3. Bilar som passerar t.ex. en bro. 4. Personer som ställer sig i en kö.

2 5. Mutationer i DNA. 6. Partikelemissioner från ett radioaktivt ämne. 7. Och många andra. 2.1 Egenskaper Ur den korta definitionen kan man visa att Poissonprocessen har föjlande egenskaper. A. X(t) Po(λt) (därav namnet). Speciellt gäller E(X(t)) = λt. B. Om s > t så är X(s) X(t) Po(λ(s t)). C. Om u > v s > t så är X(u) X(v) och X(s) X(t) oberoende. (Dvs 1.) D. Tiden T 1 tills den första händelsen är Exp( 1 λ ). E. Tiden S n mellan n:te och n 1:te händelserna är Exp( 1 λ ). Dessutom är S n och S m oberoende, om n m. F. Tiden T n = T 1 +S S n tills den n:te händelsen är Γ(n, 1 λ ) (= Gammafördelningen med parametrar n och 1/λ = summan av n st. Exp( 1 λ )). G. Händelsen X(t) < n är ekvivalent med T n > t om tiden tills den n:te händelsen är större än t, har det inträffat färre än n händelser fram tills tiden t. Notera att A. ger att X(t) = 0! B. säger ungefär att processen startar om vid alla tidpunkter: Y (t) = X(s + t) X(s) = antalet händelser från tid s till tid t är en ny Poissonprocess (med intensitet λ). G. är väldigt användbart; det är en direkt koppling mellan summor av exponentialvariabler och Poissonfördelningen Gammafördelningen (Γ-fördelningen). Om en s.v. X har täthet f X (x) = 1 (n 1)! xn 1 1 m p ex/a, sägs X vara Gammafördelad med parametrar n och m: X Γ(n, m). Om n är ett heltal, är X summan av n st. Exp(m) variabler. Alltså är Γ(1, m) = Exp(m).

3 2.2 Exempel Anta att vi får SMS som en Poisson-process med intensitet 4 SMS per timme. a) Vad är sannolikheten att vi får minst 4 första timmen? X(1) Po(λt) = Po(4), så P (X(1) 4) = 1 P (X(1) 3) = = b) Vad är sannolikheten att vi får minst fyra både första och andra timmen? X(1) Po(4), och X(2) X(1) Po(λ(2 1)) = Po(4), och dessa två variabler är oberoende, så P (X(1) 4 X(2) X(1) 4) = P (X(1) 4)P (X(2) X(1) 4) = = c) Vad är sannolikheten att vi måste vänta en timme på det första SMS:et? Tiden T 1 tills den första händelsen är Exp( 1 λ ) = Exp( 1 4 ), som har fördelningsfunktion F T1 (t) = 1 e 4t, så P (T 1 > 1) = e 4 = Alternativt, så är händelsen {T 1 > 1} ekvivalent med {X(1) = 0} (om vi måste vänta längre än 1 timme på det första SMS:et, har det kommit 0 st. fram till tid 1). Den sökta 4 40 sannolikheten är alltså P (X(1) = 0) = e 0! = d) Vad är sannolikheten att det tiden tills det fjärde SMS:et kommer är mindre än en timme? Vi vill veta sannolikheten för P (T 4 < 1), där T 4 Γ(4, 1 4 ). Det blir en ganska krånglig integral, men vi kan skriva om det med hjälp av X(t) istället; Händelsen {T 4 < 1} är ekvivalent med {X(1) 4} (om vi har fått minst 4 efter en timme, måste ju det fjärde ha kommit inom en timme). Så P (T 4 < 1) = P (X(1) 4) = Tidsberonde intensitet En nackdel med vår nuvarande defintion av Poissonprocessen är att intensiteten λ måste vara konstant. Man inser ju att det tex. rings mindre under natten än under dagen. Ofta är detta inget problem; man är intresserad av ett kort intervall (i telefonexemplet kanske en minut eller en timme), där intensiteten kan antas vara konstant. Inom vissa områden är det dock nödvändigt att anta att intensiteten varierar. Turligt nog är detta inget formellt problem, dock kan de praktiska räkningarna bli krångliga. Anta att intensiten vid tid t beskrivs av en funktion λ(t). Då kan man definera en Poissonprocess med intensitetsfunktion λ(t) (också kallad en icke-homogen Poissonprocess). Den kommer då att få följande egenskaper: X(t) Po(Λ 0,t ), där Λ 0,t = t 0 λ(x)dx. X(t) X(s) Po(Λ s,t ), där Λ s,t = t s λ(x)dx. Oberoende ökningar (precis som C.). Tiden T tills första händelsen har fördelningsfunktion P (T < t) = 1 exp(λ 1 0,t ). osv.

4 2.3.1 Bitvis konstant intensitet. Ett användbart specialfall är då intensiteten är bitvis konstant, dvs. λ(t) = λ 1, 0 t < t 1, λ 2, t 1 t < t 2, λ 3, t 2 t < t 3,... Detta är förhållandevis lätt att använda. Så länge man är intresserad av ett intervall med konstant intensitet, har man en vanlig (homogen) Poissonprocess. Annars delar man upp processen i bitarna med konstant intensitet. Exempel. Anta att X(t) är en Poissonprocess med intensitet 2 för t mellan 0 och 3, och med intensitet 1 för t större än 3. Vad är P (X(4) = 3)? Lösning: Dela in så här: X(3) är Po(2 3), och X(4) X(3) är Po(1 1), och oberoende av X(3). Därför är P (X(4) = 3) = 3 P (X(3) = k)p (X(4) X(3) = 3 k) = k=0 3 Övningsuppgifter 3 k=0 6 6k 1 3 k e k! e 1 (3 k)! =... Poängen efter uppgifterna anger ungerfär svårighetsgraden, i meningen att det är ungefär så många poäng den uppgiften skulle ge på en normal tenta. Anta att fel i en dataström inträffar som en Poisson-process med intensitet λ = 15 fel per sekund. Låt X(t) vara antalet fel fram till tid t. a) Vad har X(1) = antalet fel under första sekunden för väntevärde? (1p) b) Vad är sannolikheten att det blir minst 16 fel första sekunden? (2p) c) Vad har antalet fel under tredje sekunden (X(3) X(2)) för fördelning? (1p) d) Vad har S 2 = tiden mellan 1:a och 2:a händelsen för väntevärde? (2p) e) Vad är sannolikheten att det under varje av de fyra första sekunderna finns minst 16 fel? (4p) f) Vad är sannolikheten att det finns minst 64 fel under de fyra första sekunderna? Motivera eventuella approximationer. (4p) g) Låt T n vara tiden tills det n:te felet. Vad är P (T 64 < 4)? Motivera eventuella approximationer. (5p)

5 h) Vad är sannolikheten att tiden mellan 1:a och 2:a, mellan 2:a och 3:de, och mellan 3:de och 4:de felen alla är mindre än 0.05 sekunder? (5p) i) Under de 2 första sekunderna fanns det 20 fel. Vad är sannolikheten att alla dessa kom under andra sekunden? (mer än 5p) 4 Lösningar a) X(1) Po(λ 1) = Po(15), så E(X(1)) = 15. b) X(1) Po(15), så P (X(1) 15) = 1 P (X(1) 15) = = (tab. 7). c) X(3) X(2) Po(λ(3 2) = Po(15). d) S 2 är Exp( 1 λ ) = Exp( 1 15 ), så E(S 2) = ( 1 15 ). e) Antalet fel första sekunden är Po(16) enligt a), antalet fel under tredje sekunden är också Po(16) enligt c). Det samma gäller för andra- och fjärde sekunden. Eftersom det rör sig om disjunkta intervall, är de fyra variablerna oberoende, och den sökta sannolikheten är: P (X(1) 16, X(2) X(1) 16, X(3) X(2) 16, X(4) X(3) 16) = (från b)). f) Antal fel under de fyra första sekunderna X(4) är Po(15 4) = Po(60). Eftersom 60 > 15, kan vi approximera med normalfördelningen; X(4) N(60, 60), och P (X(4) 64) = 1 P (X(4) 63) 1 Φ( ) = 1 Φ(0.39) = (Med halvkorrektion: P (X(4) 64) = 1 P (X(4) ) 1 Φ( ) = 1 Φ(0.45) = (Exakt P (X(4) 64) = ) g) {T 64 < 4} är ekvivalent med {X(4) 64}, så från f) är P (T 64 < 4) h) S 2, S 3, S 4 är alla Exp( 1 15 ), och oberoende. P (S 2 < 0.05, S 3 < 0.05, S 4 < 0.05) = (P (S 2 < 0.05)) 3 = ( 1 e ) 3 = = i) Lång lösning: Vi vill veta P (X(1) = 0 X(2) = 20) = P (X(1)=0 X(2)=20) P (X(2)=20). X(1) och X(2) är inte oberoende, men X(1) och X(2) X(1) är det. Händelsen {X(1) = 0 X(2) = 20} är ekvivalent med {X(1) = 0 X(2) X(1) = 20}, och P (X(1) = 0 X(2) X(1) = 20) = P (X(1) = 0)P (X(2) X(1) = 20) 15 1 (15 1)0 P (X(1) = 0) = e = e , P (X(2) X(1) = 20) = e 0! 20!. P (X(1) = 0 X(2) = 20) = 15 2 (15 2)20 P (X(2) = 20) = e 20! P (X(1) = 0 X(2) = 20) P (X(2) = 20) = e 20!. = P (X(1) = 0)(X(2) X(1) = 20). P (X(2) = 20)

6 = e 15 e ! e ! = = Kort lösning: Givet att det inträffat 20 händelser fram till tid 2, är tidpunkterna för de 20 händelserna oberoende, och likformigt fördelade i intervallet (0,2). Sannolikheten att en händelse inträffar i intervallet (1,2) är därför 0.5, och sannolikheten att alla 20 gör det

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och

Läs mer

TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010

TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 1 1 Stokastiska processer Definition 1.1 En stokastisk process är en familj {X(t);t T } (kan även skrivas {X

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess

Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Problemsamling i Sannolikhetsteori

Problemsamling i Sannolikhetsteori Problemsamling i Sannolikhetsteori till An Intermediate Course in Probability av Allan Gut Sammanställd av Harald Lang 22/5-05 Kapitel 0 (Introduction) Man har ett seriesystem med två enheter som går sönder

Läs mer

Stokastiska Processer

Stokastiska Processer Kapitel 3 Stokastiska Processer Karakteristisk funktion: Den karakteristiska funktionen φ ξ : R n C för en R n -värd s.v. definieras för t R n. φ ξ (t) = E{e iπ(t ξ +...+t nξ n) } = E{e iπtt ξ } Den karakteristiska

Läs mer

Föreläsning 8, Matematisk statistik Π + E

Föreläsning 8, Matematisk statistik Π + E Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

FÖRELÄSNING 4:

FÖRELÄSNING 4: FÖRELÄSNING 4: 26-4-9 LÄRANDEMÅL Poissonfördelning Kontinuerliga slumpvariabler Kontinuerlig uniform fördelning Exponentialfördelning Samla in data Sammanställ data Gissa modell för datan Testa modellen

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys 1 / 14 Statistiska metoder för säkerhetsanalys F2: Händelseströmmar och Poissonprocesser Definition Intensitet Exempel 2 / 14 Händelseström Händelsen A inträffar vid de okända tidpunkterna S 1, S 2,...

Läs mer

Problemdel 1: Uppgift 1

Problemdel 1: Uppgift 1 STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 6 Markovprocesser 9 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 6 Föreläsningsplan 1 Förra Föreläsningen 2 Johan Westerborn

Läs mer

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Föreläsning 3. Sannolikhetsfördelningar

Föreläsning 3. Sannolikhetsfördelningar Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 2 Maj 2016 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 5 Markovprocesser 24 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 5 Föreläsningsplan 1 Förra Föreläsningen 2 Poissonprocessen

Läs mer

Exempel för diskreta och kontinuerliga stokastiska variabler

Exempel för diskreta och kontinuerliga stokastiska variabler Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat

Läs mer

Föreläsning 2, FMSF45 Slumpvariabel

Föreläsning 2, FMSF45 Slumpvariabel Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt

Läs mer

Lärmål Sannolikhet, statistik och risk 2015

Lärmål Sannolikhet, statistik och risk 2015 Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

1 Föreläsning V; Kontinuerlig förd.

1 Föreläsning V; Kontinuerlig förd. Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

Matematisk statistik TMS064/TMS063 Tentamen

Matematisk statistik TMS064/TMS063 Tentamen Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof

Läs mer

Föreläsning 2 (kap 3): Diskreta stokastiska variabler

Föreläsning 2 (kap 3): Diskreta stokastiska variabler Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några

Läs mer

Föresläsningsanteckningar Sanno II

Föresläsningsanteckningar Sanno II Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

Föreläsning 4, Matematisk statistik för M

Föreläsning 4, Matematisk statistik för M Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

6. Flerdimensionella stokastiska variabler

6. Flerdimensionella stokastiska variabler 6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F11: Poissonprocesser och tillförlitlighet Egenskaper Träd Test London Poissonprocesser i planet Vi har ett område B. Låt N(B) vara antalet händelser som inträffar i område B. Om det gäller att två eller

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 4 Markovprocesser 20 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 4 Föreläsningsplan 1 Förra Föreläsningen 2 Innbäddade

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Föreläsning 5: Hypotesprövningar

Föreläsning 5: Hypotesprövningar Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

F10 Kap 8. Statistikens grunder, 15p dagtid. Binomialfördelningen 4. En räkneregel till. Lite repetition HT Sedan

F10 Kap 8. Statistikens grunder, 15p dagtid. Binomialfördelningen 4. En räkneregel till. Lite repetition HT Sedan 01-09-7 F10 Kap 8 Statistikens grunder, 15p dagtid HT 01 Lite repetition Kovarians Binomial- och Poissonfördelning Täthetsfunktion (kont.) Fördelningsfunktion (kont.) Arean under en kurva Sedan Normalfördelningen

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

e x/1000 för x 0 0 annars

e x/1000 för x 0 0 annars VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel. Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

Föreläsning 8 för TNIU23 Integraler och statistik

Föreläsning 8 för TNIU23 Integraler och statistik Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Stokastiska processer och simulering I 24 maj

Stokastiska processer och simulering I 24 maj STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14

Läs mer

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren. Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 Gripenberg I1. Vi antar att antalet telefonsamtal som kommer till ett servicenummer under en tidsperiod med längden

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer