3 Grundläggande sannolikhetsteori
|
|
- Torbjörn Eliasson
- för 8 år sedan
- Visningar:
Transkript
1 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket av arbetet bakom det som kom att kallas klassisk sannolikhetsteori utfördes av Pierre-Simon Laplace under 1800-talet. Den klassiska denitionen av en sannolikhet lyder: Antag att det nns M möjliga utfall i utfallsrummet, och att alla är lika sannolika. Om G av utfallen är gynnsamma, dvs. medför en viss händelse A, så ges sannolikheten för A av P (A) = G/M. Under första halvan av 1900-talet utvecklade Andrej Kolmogorov idéer från bland andra Henri Lebesgue och Georg Cantor, och lade grunden till den moderna sannolikhetsteorin som baseras på måtteori. Vi kommer att använda en förenklad version av den moderna sannolikhetsteorin baserad på tre sannolikhetsaxiom formulerade av Kolmogorov: 1. För varje händelse A gäller att 0 P (A) 1. Speciellt gäller att om A saknar element, dvs. A är den tomma mängden, så är P (A) = P (Ω) = 1, där Ω är hela utfallsrummet. 3. Om A och B är disjunkta, dvs. saknar gemensamma element, så är P (A B) = P (A) +. Additionssatsen säger att P (A B) = P (A) + P (A B). Veriera satsen med hjälp av Venndiagram! Komplementhändelsen A C denieras så att A A C = Ω och A A C =. Om vi ersätter B med A C i additionssatsen får vi vilket är samma sak som P ( A A C) = P (A) + P ( A C) P ( A A C), P (Ω) = P (A) + P ( A C) P ( ). Kolmogorovs axiom säger att P (Ω) = 1 och P ( ) = 0 så 1 = P (A) + P ( A C), och sannolikheten för komplementhändelsen blir P ( A C) = 1 P (A). 1
2 Exempel 3.1. Vi kastar två vanliga 6-sidiga tärningar, en röd och en grön. Vad är sannolikheten att vi får en 1:a på den röda tärningen och/eller en 6:a på den gröna? Låt A vara händelsen att den röda tärningen visar en 1:a, och B vara händelsen att den gröna tärningen visar en 6:a. Vi är intresserade av sannolikheten för A B. Sannolikheterna för både A och B är 1/6. Sannolikheten för A B, alltså både en 1:a på den röda tärningen och en 6:a på den gröna, är 1/36. Additionssatsen ger nu P (A B) = P (A) + P (A B) = = Exempel 3.2. Vi kastar två vanliga 6-sidiga tärningar, en röd och en grön. Vad är sannolikheten att tärningssumman är större än 4? Låt A vara händelsen att tärningssumman är större än 4, då är A C händelsen att tärningssumman är mindre än eller lika med 4. Detta kan erhållas på 6 olika sätt: den röda visar 1:a och den gröna 1:a, 2:a eller 3:a (3 sätt); den röda visar 2:a och den gröna 1:a eller 2:a (2 sätt); den röda visar 3:a och den gröna 1:a (1 sätt). Vi får sannolikheten för A genom P (A) = 1 P ( A C) = = 5 6. Ett par räkneregler som ibland kan underlätta är DeMorgans formler P ( A C B C) = 1 P (A B), P ( A C B C) = 1 P (A B). Dessa gäller eftersom (A B) C = A C B C och (A B) C = A C B C. Rita Venndiagram för att bekräfta detta! Det nns formler motsvarande additionssatsen och DeMorgans formles även för 3 eller era händelser, men det är oftast enklare att rita Venndiagram än att försöka lära sig dessa. Kombinatorik Kombinatorik är en gren av matematiken som behandlar bland annat kombinationer och permutationer. En kombination är en unik delmängd (av någon större mängd) med ett bestämt antal element där ordningen inte har betydelse. En permutation är en ordnad kombination. Exempel 3.3. Tag 3 olika bokstäver ur alfabetet. Kombinationen ABC har permutationerna: ABC, ACB, BAC, BCA, CAB och CBA. 2
3 Multiplikationsprincipen är välanvänd inom kombinatoriken: Om man i tur och ordning ska göra k stycken operationer där den första kan göras på n 1 sätt, den andra på n 2 sätt, osv., så är totala antalet sätt att göra de k operationerna på n 1 n 2... n k. Exempel 3.4. På hur många sätt kan kombinationen ABC permuteras? Detta problem kan ses som att i tur och ordning välja den första bokstaven, den andra bokstaven, och slutligen den tredje bokstaven. Det första valet (den första operationen) kan utföras på 3 olika sätt, det andra på 2 sätt, och det sista på enbart 1 sätt. Multiplikationsprincipen säger att det nns totalt = 6 sätt att utföra dessa operationer på, och slutsatsen blir att det nns 6 permutationer av kombinationen ABC (precis som vi sett i föregående exempel). Produkten k (k 1) betecknas k! (utläses k-fakultet). Exempel 3.5. Antag att vi ska välja ut tre personer i klasser som elevrepresentanter i kursutvärderingsnämnden. På hur många sätt kan vi göra det om det nns totalt 35 studenter i klassen? Om ordningen vi väljer studenterna i spelar roll kan vi se det som att först välja en av 35 studenter, sedan välja en av de återstående 34 studenterna, och till sist välja en av de 33 studenterna som är kvar efter de två första valen. Enligt multiplikationsprincipen kan detta göras på = sätt. Detta är antalet 3-personspermutationer om vi totalt har 35 personer. Säg att vi först väljer Anja, sedan Bodil, och därefter Calle. Om ordningen inte spelar någon roll är det samma sak som att välja Anja, Calle och sen Bodil, eller Calle, Bodil och sen Anja. Kombinationen (Anja, Bodil, Calle) har 6 olika permutationer (se föregående exempel med bokstäverna ABC). De personspermutationerna motsvarar därför 39270/6 = personskombinationer. Om ordningen inte spelar roll kan vi alltså välja 3 personer bland 35 på 6545 olika sätt. Generellt gäller att vi kan välja k element av totalt n på n (n 1)... (n k + 1) sätt om ordningen har betydelse, och ( ) n n! n (n 1)... (n k + 1) := = k k!(n k)! k (k 1) sätt om ordningen inte har betydelse. I det första fallet, om ordningen har betydelse, räknar vi ut antalet permutationer med k element det nns om 3
4 totala antalet element vi kan välja från är n. I det andra fallet, om ordningen inte har betydelse, räknar vi ut antalet kombinationer med k element det nns om totala antalet element vi kan välja från är n. Uttryck av typen ( n k) (utläses n över k) kallas binomialkoecienter. Beroende och oberoende händelser Två händelser A och B är statistiskt oberoende om och endast om P (A B) = P (A). Om A och B inte är statistiskt oberoende så är de statistiskt beroende. Oftast utelämnar man ordet statistiskt och säger bara oberoende eller beroende. Tre händelser A 1, A 2 och A 3 är oberoende om och endast om och P (A 1 A 2 A 3 ) = P (A 1 ) P (A 2 ) P (A 3 ) P (A i A j ) = P (A i ) P (A j ), för i j. På liknande sätt kan man deniera oberoende för 4 eller er händelser. Exempel 3.6. Vi kastar en vanlig 6-sidig tärning. Låt händelsen A vara att vi får ett jämnt antal prickar, och händelsen B vara att vi får er än 3 prickar upp på tärningen. Är A och B oberoende? Vi har Ω = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6} och B = {4, 5, 6}. Snittet A B är de element som nns i både A och B, alltså A B = {4, 6}. Sannolikheterna beräknas till P (A) = 1/2, = 1/2 och P (A B) = 1/3, och vi får P (A) = = = P (A B). Eftersom P (A) P (A B) så är A och B inte oberoende. Den betingade sannolikheten att händelsen A inträar givet att händelsen B inträar är P (A B) P (A B) =. Om A och B är oberoende gäller att P (A B) = P (A B) = P (A) = P (A), 4
5 och den lososka tolkningen av detta är att kännedomen att B inträat inte ger oss någon ny information om sannolikheten att A kommer att inträa om A och B är oberoende. Från denitionen av betingad sannolikhet följer direkt att P (A B) = P (A B). Eftersom A B är samma sak som B A så gäller även att P (A B) = P (B A) = P (B A) P (A). Eftersom vänsterleden i de två ovanstående uttrycken är lika så måste även högerleden vara lika. Alltså gäller att P (A B) = P (B A) P (A). Dividera båda leden med för att erhålla Bayes sats P (A B) = P (B A) P (A). Exempel 3.7. Vi kastar en vanlig 6-sidig tärning. Vad är sannolikheten att vi får er än 1 prick givet att vi får ett jämnt antal prickar? Och vad är sannolikheten att vi får ett jämnt antal prickar givet att vi får er än 1 prick? Låt händelsen A vara att vi får ett jämnt antal prickar, och händelsen B vara att vi får er än 1 prick upp på tärningen. Vi har Ω = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6}, B = {2, 3, 4, 5, 6} och A B = {2, 4, 6}. Sannolikheterna beräknas till P (A) = 1/2, = 5/6 och P (A B) = 1/2, och vi får de betingade sannolikheterna P (B A) = P (B A) P (A) = 1/2 1/2 = 1 och, från Bayes sats, P (A B) = P (B A) P (A) = 1 1/2 5/6 = 3 5. Generellt är P (A B) P (B A). För att få en bättre förståelse för betingade sannolikheter kan vi använda oss av en korstabell (se Tabell 3). 5
6 A A C B P (A B) P ( A C B ) B C P ( A B C) P ( A C B C) P ( B C) P (A) P ( A C) 1 Tabell 1: Korstabell för händelserna A och B. 6
Föreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
Läs mer{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}
Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden
Läs merUtfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse
Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas
Läs merTMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker
Läs merKap 2: Några grundläggande begrepp
Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de
Läs merKolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog
Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
Läs merSannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann
Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,
Läs merTMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns
Läs merMatematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök
Läs merKombinatorik och sannolikhetslära
Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i
Läs merStatistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov
OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:
Läs merSF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Läs merFöreläsning 1, Matematisk statistik Π + E
Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori
Läs merMatematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
Läs merMatematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska
Läs merStatistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
Läs merMatematisk statistik 9hp för: C,D,I, Pi
Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk
Läs merÖvning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Läs merSannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
Läs merFinansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten
Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F2 Sannolikhetsteori Sannolikhetslära koppling till verkligheten mängdlära räkna med sannolikheter definitioner
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merFöreläsning 1. Grundläggande begrepp
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 1 Sannolikhetsteori (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Läs merTMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
Läs merFinansiell statistik, vt-05. Bayes sats. Bayes sats; forts. F3 Sannolikhetsteori. Exempel: antag att vi har tre skålar P( ) = 0 P( ) = 2/5 P( ) = 4/5
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt- F Sannolikhetsteori Bayes sats Exempel: antag att vi har tre skålar / 4/ och någon väljer skål m slh: / /6 /
Läs merTAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
Läs merFöreläsning 1, Matematisk statistik för M
Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:
Läs merhändelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning
Läs mer1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Läs merSannolikhetsbegreppet
Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om kombinatorik Mikael Hindgren 24 september 2018 Vad är kombinatorik? Huvudfråga: På hur många sätt kan en viss operation utföras? Några exempel: Hur många gånger
Läs merStatistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet
Läs mer1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler
Läs merReliability analysis in engineering applications
Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University
Läs merStatistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Vad vi ska gå igenom Mängdlära Absolutbelopp Summatecknet Potensräkning Logaritmer och exponentialfunktionen Kombinatorik 2013-09-03 Michael
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Läs merTMS136. Föreläsning 2
TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen
Läs merKOMBINATORIK. Exempel 1. Motivera att det bland 11 naturliga tal finns minst två som slutar på samma
Explorativ övning 14 KOMBINATORIK Kombinatoriken används ofta för att räkna ut antalet möjligheter i situationer som leder till många olika utfall. Den används också för att visa att ett önskat utfall
Läs merArmin Halilovic: EXTRA ÖVNINGAR
KOMBINATORIK I kombinatoriken sysslar man huvudsakligen med beräkningar av antalet sätt på vilket element i en given lista kan arrangeras i dellistor. Centrala frågor i kombinatoriken är: " Bestäm antalet..."
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de
Läs merInstitutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel
Läs mer4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Läs merFöreläsning G70, 732G01 Statistik A
Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Läs merNågot om kombinatorik
Något om kombinatorik 1. Inledning Kombinatoriken är den gren av matematiken som försöker undersöka på hur många olika sätt något kan utföras. Det kan vara fråga om mycket olika slag av problem. Kombinatoriska
Läs merFöreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter
Läs merKombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av
Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.
Läs merUppgifter 6: Kombinatorik och sannolikhetsteori
Grunder i matematik och logik (2017) Uppgifter 6: Kombinatorik och sannolikhetsteori Marco Kuhlmann Kombinatorik Nivå A 6.01 En meny består av tre förrätter, fem huvudrätter och två efterrätter. På hur
Läs merSannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se
May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment
Läs merKombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1
Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13
Läs merLösningar och lösningsskisser
Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018
Läs merSannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
Läs merFMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska
Läs merSTOKASTIK Sannolikhetsteori och statistikteori med tillämpningar
2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll
Läs merF3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att
Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad
Läs merKapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.
Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens
Läs merIntroföreläsning i S0001M, Matematisk statistik LP3 VT18
föreläsning i S0001M, Matematisk statistik LP3 VT18 Luleå tekniska universitet 15 januari 2018 Gruppindelning och lärare Gruppindelning Grupp A - Datateknik, Väg- och vatten (Mykola) Grupp B - Ind. ekonomi,
Läs merIntroföreläsning i S0001M Matematisk statistik Läsperiod 2, HT 2018
Introföreläsning i S0001M Matematisk statistik Läsperiod 2, HT 2018 Mykola Shykula Luleå tekniska universitet 5 november 2018 Gruppindelning och lärare Gruppindelning Grupp A: 30 st Arkitekt (TCARA), 20
Läs merExempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Läs merF2 SANNOLIKHETSLÄRA (NCT )
Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive
Läs merBetingad sannolikhet och oberoende händelser
Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs merSatsen om total sannolikhet och Bayes sats
Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om
Läs merMatematisk statistik för D, I, Π och Fysiker. Matematisk statistik slumpens matematik. Tillämpningar för matematisk statistik.
Matematisk statistik för D, I, Π och Fysiker Föreläsning 1 Johan Lindström 4 september 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F1 2/29 Matematisk statistik slumpens matematik Sannolikhetsteori:
Läs merKOMBINATORIK OCH BINOMIALSATSEN
KOMBINATORIK OCH BINOMIALSATSEN PERMUTATIONER (Ordnade listor med n element, så kallade n- tipplar) 1. (permutationer av n olika element) Vi betraktar ordnade listor med n olika element,,, Varje bestämd
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 70 Många tänker på tabeller 1 när de hör ordet statistik.
Läs merHjalpmedel: Inga hjalpmedel ar tillatna pa tentamensskrivningen. 1. (3p) Los ekvationen 13x + 18 = 13 i ringen Z 64.
Matematiska Institutionen KTH Losning till tentamensskrivning i Diskret Matematik, SF och B8, torsdagen den oktober, kl.-.. Examinator Olof Heden. Hjalpmedel Inga hjalpmedel ar tillatna pa tentamensskrivningen.
Läs merStarta med att läsa avsnitt 2.1 i [J] från sidan 56 (64) [76] till och med exempel (2.1.3) [2.1.5] på sidan 57 (65) [79].
Block 1 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Mängder 2. Multiplikationsprincipen 3. Mera om mängder Venn-diagram Mängdoperationer 4. Additions- och sållningsprincipen
Läs merDiskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merMatematisk statistik
Matematisk statistik för STS vt 2004 2004-03 - 23 Bengt Rosén Matematisk statistik Ämnet matematisk statistik omfattar de två delområdena Sannolikhetsteori Statistikteori Bloms A - bok behandlar sannolikhetsteori,
Läs merLösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla
Läs merIntroduktion till sannolikhetslära. Människor talar om sannolikheter :
F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merKombinatorik : Lösningar
Kombinatorik 2016-03-16: Lösningar 1. En rad med 9 träd ska planteras vid en gata. Raden ska inkludera exakt 2 ek, ett jämnt antal björk och resten tall. På hur många sätt kan man plantera raden? Lösning:
Läs mer1 Föreläsning II, Vecka I, 5/11-11/11, avsnitt 2.3
1 Föreläsning II, Veca I, 5/11-11/11, avsnitt 2.3 1.1 Kombinatori Ex 2.1 I ett rutnät går man åt höger eller uppåt. Hur många vägar finns det mellan A och B? B A Vi har 8 (del-)sträcor att välja uppåt
Läs merVidare får vi S 10 = 8,0 10 4 = 76, Och då är 76
Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a
Läs merHur många registreringsskyltar finns det som inte innehåller samma tecken mer än en
Föreläsning 10 Multiplikationsprincipen Additionsprincipen Permutationer Kombinationer Generaliserade permutationer och kombinationer. Binomialsatsen Multinomialsatsen Lådprincipen (Duvslagsprincipen)
Läs merKombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011
Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13
Läs merLösningar till utvalda uppgifter i kapitel 6
Lösningar till utvalda uppgifter i kapitel 6 6.10. (a Om vi bortser från villkoret så nns det ( 1 5 olika arbetsgrupper. Ifrån detta tal får vi sedan subtrahera det antal grupper som innehåller både Herr
Läs merMängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann
Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.
Läs merReflektionsprincipen
156 eflektionsprincipen Dag Jonsson Uppsala Universitet 1. Inledning. Något om permutationer. Eempel 1. Vi skriver bokstäverna A, B, C i rad. å hur många olika sätt kan de tre bokstäverna ordnas inbördes
Läs merKapitel 2. Grundläggande sannolikhetslära
Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig
Läs merSF1914/SF1916: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 27 augusti, 2018 KURSINFORMATION Blom m.fl. Sannolikhetsteori
Läs mer1 Föreläsning II, Vecka I, 21/1-25/11, 2019, avsnitt
1 Föreläsning II, Veca I, 1/1-5/11, 019, avsnitt.3 1.1 Kombinatori Exempel 1.1 I ett rutnät går man åt höger eller uppåt. Hur många vägar finns det mellan A och B? B A Vi har 8 (del-)sträcor att välja
Läs merMängdlära. Kapitel Mängder
Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt
Läs merjosefin.bodell@marketmath.se
1 Bilar & Getter Du är med i ett spel-och-lek-program på TV. Du får välja en av tre dörrar. Bakom en av dörrarna finns en bil, men du vet inte bakom vilken... 2 Bilar & Getter Du väljer en dörr, säg, Programledaren
Läs mer(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 23 mars, 2015 KURSINFORMATION Blom m.fl. Sannolokhetsteori och statistikteori
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs mer