a) Ange ekvationen för den räta linjen L. (1/0/0)
|
|
- Anders Ekström
- för 9 år sedan
- Visningar:
Transkript
1 Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0). Lös ekvationerna. Svara exakt. x a) 5 = 3 (1/0/0) b) x +1 = 5 (1/0/0) 3. Koordinatsystemet visar en rät linje L och en punkt P som ligger på linjen. a) Ange ekvationen för den räta linjen L. (1/0/0) b) Ange ekvationen för en annan rät linje så att den tillsammans med linjen L bildar ett ekvationssystem som har sin lösning i punkten P. (1/0/0)
2 4. På tallinjen finns sex punkter A F markerade. Varje tal nedan motsvaras av en markerad punkt på tallinjen. Para ihop vart och ett av talen med en punkt på tallinjen genom att skriva rätt bokstav A F vid rätt tal. (/0/0) 5. Två av ekvationerna A E har reella lösningar. Vilka två? A. x + 3 = 1 B. x + 6x 3= C. x = 9 D. x 4x + 9 = E. ( x )( x + ) = 0 (0/1/0) x 6. Beräkna 10 om lg x = 0 (0/1/0) 7. Under år 1998 skickades 44 miljoner sms i Sverige. Under år 01 skickades miljoner sms. Anta att den årliga procentuella ökningen av antal sms per år har varit lika stor under hela tidsperioden. Beteckna den årliga förändringsfaktorn med a. Teckna en ekvation med vars hjälp a kan beräknas. (0/1/0) 3
3 8. Koordinatsystemet visar graferna till en rät linje f och en andragradsfunktion g. Besvara frågorna med hjälp av graferna. a) För vilka värden på x gäller att gx< ( ) 3? (0//0) b) För vilka värden på x gäller att f( x) gx ( ) = 0? (0/0/1) 9. Förenkla följande uttryck så långt som möjligt. a) ( x + 3) ( x+ 3) (0/0/1) b) lg x x lg x lg (0/0/1) 4
4 Delprov C: Digitala verktyg är inte tillåtna. Skriv dina lösningar på separat papper. 10. Lös andragradsekvationen x 6x+ 5= 0 med algebraisk metod. (/0/0) 11. Lös ekvationssystemet y x = 5 y x = 4 med algebraisk metod. (/0/0) 1. Figuren visar två rektanglar som har sidlängderna x cm respektive ( 8 x) cm. Bestäm den största totala area som de två rektanglarna kan ha tillsammans. (1//0) a b 13. Förenkla uttrycket så långt som möjligt om a = x och b = x 1, 5 (0//0) 14. En andragradsekvation x + ( a + 4) x + ( b + 5) = 0 har lösningarna x 1 =1 x = 3 Bestäm värdet på a och b. (0//0) 5
5 15. I en rätvinklig triangel ABC finns en grå kvadrat AEFD inritad. Sträckan BE är 4 cm och sträckan CD är cm. Se figur. Visa att den grå kvadratens area är 8 cm. (0//0) 16. En cirkel med radien a tangerar de positiva koordinataxlarna. Den tangerar även en mindre cirkel som har mittpunkten i origo. Se figur. Visa att den mindre cirkelns radie är a ( 1) längdenheter. (0/0/3) 6
6 17. För andragradsfunktionen f gäller att f ( x) = 0,5x + bx a) Bestäm för vilka värden på b som f endast har ett nollställe. (0//0) I figuren nedan ser du graferna till funktionen f för några olika värden på b. Grafernas maximipunkter är markerade. Då b varierar följer maximipunkterna grafen till en ny andragradsfunktion g, se figur. b) Bestäm andragradsfunktionen g. (0/0/3) 7
7 Delprov D: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 18. En linje går genom punkterna (0, 0) och (3; 6,45). En annan linje har ekvationen y =,15x + 3. Visa att linjerna är parallella. (/0/0) 19. För funktionen f gäller att f ( x) = x 4x + C där C är en konstant. Punkten (5, 7) ligger på funktionens graf. Bestäm koordinaterna för en annan punkt som också ligger på grafen. (/0/0) 0. Lådagrammet visar resultatet från ett stickprov. Stickprovet anger antalet timmar en person sov per natt under en period av 15 nätter. Värdena i stickprovet nedan är angivna i storleksordning. Två värden har ersatts med x respektive y. x, 5, 6, 6, 7, 7, 7, y, 8, 8, 8, 8, 9, 9, 13 Vilka värden har x och y? Motivera ditt svar. (/0/0)
8 1. Magnituden M är ett mått på hur starkt en stjärna lyser och kan beräknas med hjälp av formeln r M 5 = a 5lg där r är avståndet i meter från jorden till stjärnan och a en konstant för en specifik stjärna, se tabell nedan. Stjärnans namn M a r Solen 4,80 6, 7 Sirius A 1, 46 Proxima Centauri 15,5 11,1 11 1, ,14 10 a) Beräkna magnituden M för stjärnan Sirius A. (/0/0) b) Beräkna avståndet r till stjärnan Proxima Centauri. (0//0) 3
9 . Ett exemplar av ett känt datorföretags första datormodell såldes under år 013. I samband med försäljningen kunde man läsa följande i en tidningsnotis: Priset för datorn har därmed tusenfaldigats, sedan den ursprungligen såldes Den tillverkades för hand av företagets båda grundare, ledaren Steve Jobs och programmeraren Steve Wozniak, hemma i Jobs garage. 1 Enligt tidningsnotisen såldes datorn år 013 till ett pris som var tusen gånger så stort som priset år Anta att den procentuella prisökningen varit lika stor varje år. Beräkna den årliga procentuella prisökningen mellan år 1976 och år 013 för datorn. (0/3/0) 3. För en funktion f där f ( x) = kx + m gäller att f ( x + ) f ( x) = 3 f ( 4) = m Bestäm funktionen f. (0/0/) 1 TT 6 maj 013 4
10 4. En Galtonbräda är en anordning som används för att illustrera normalfördelning. Kulor släpps ner och ändrar riktning genom att passera ett antal spikar. Kulorna hamnar i olika fack och antalet kulor i facken blir ungefär normalfördelat kring mitten av brädan. Se figur. Vid ett experiment släpptes 1478 kulor ner i en Galtonbräda med 16 fack. I fack 6 hamnade 136 kulor, i fack 7 hamnade 3 kulor och i fack 8 hamnade 81 kulor. Hur många kulor bör ha hamnat i fack 5? (0/0/) 5
11 5. Ett företag tillverkar anslagstavlor av olika storlekar. Varje anslagstavla består av en rektangulär platta omgiven av en ram. Ramen består av fyra delar som sågas till av en 5 cm bred trälist. Delarnas ändar är sågade med vinkeln 45 och trälistens utseende gör att delarna bara kan monteras på ett sätt. Ramen monteras så att den går cm in över plattans framsida. Se figur. Materialkostnaden för en anslagstavla beror på plattans area och trälistens längd. Priset för plattan anges i kr/m och för trälisten i kr/m. Materialkostnaden för en anslagstavla med bredden 36 cm och längden 46 cm är 59 kr. För en anslagstavla med bredden 46 cm och längden 56 cm är materialkostnaden 81 kr. Se figur. Teckna ett generellt uttryck för den totala materialkostnaden för anslagstavlor som har bredden a m och längden b m. (0/0/4) 6
12 Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet markeras detta med en symbol. Delprov B 1. Max 1/0/0 Korrekt svar ( x + 5 ) +1 E P. Max /0/0 lg3 a) Korrekt svar ( x = ) +1 E P lg5 b) Korrekt svar ( x = 4 ) +1 E P 3. Max /0/0 a) Korrekt svar ( y = x + ) +1 E P b) Korrekt svar (t.ex. y = 4) +1 E PL 4. Max /0/0 Anger minst tre korrekta alternativ med korrekt svar +1 E B +1 E B 5. Max 0/1/0 Korrekt svar (Alternativ B: x + 6x 5 = 0 och E: ( x )( x + ) = 0 ) +1 C B 6. Max 0/1/0 Korrekt svar (0,1) +1 C B 9
13 7. Max 0/1/0 14 Korrekt svar (t.ex = 44 a ) +1 C M 8. Max 0//1 a) Godtagbart angivet intervall, t.ex. då x är mellan 3 och 4 +1 C B med korrekt använda olikhetstecken ( 3 < x < 4 ) +1 C K b) Korrekt svar ( x = och x = 4 ) +1 A B 9. Max 0/0/ a) Korrekt svar ( 3x ) +1 A P b) Korrekt svar ( lg x ) +1 A P Delprov C 10. Max /0/0 Godtagbar ansats, sätter in värden korrekt i formeln för lösning av andragradsekvationer eller motsvarande för kvadratkomplettering +1 E P med i övrigt godtagbar lösning med korrekt svar ( x 1 = 1, x = 5 ) +1 E P Se avsnittet Bedömda elevlösningar. 11. Max /0/0 Godtagbar ansats, bestämmer en variabel med algebraisk metod +1 E P med i övrigt godtagbar lösning med korrekt svar ( x =, y = 1) +1 E P 1. Max 1//0 Godtagbar ansats, t.ex. tecknar korrekt uttryck för rektanglarnas totala area, x(8 x) +1 E PL med godtagbar fortsättning, t.ex. visar insikt om att symmetrilinjen ger funktionens maximum med i övrigt godtagbar lösning med korrekt svar (3 cm ) +1 C PL +1 C PL 10
14 13. Max 0//0 Godtagbar ansats, sätter in uttrycken för a och b och utvecklar (4x + 4x + 1) (x 1,5) 4, a +1 C P med i övrigt godtagbar lösning med korrekt svar ( x + 1) +1 C P 14. Max 0//0 Godtagbar ansats, t.ex. tecknar ett korrekt ekvationssystem +1 C PL med i övrigt godtagbar lösning med korrekt svar ( a = och b = 8) +1 C PL 15. Max 0//0 Godtagbar ansats, t.ex. ställer upp en relevant ekvation utifrån likformighet med fortsatt välgrundat resonemang som visar att arean är 8 cm +1 C R +1 C R Se avsnittet Bedömda elevlösningar. 16. Max 0/0/3 Godtagbar ansats, t.ex. bestämmer avståndet mellan origo och den stora cirkelns mittpunkt, a +1 A R med fortsatt välgrundat och nyanserat resonemang som visar att radien är a ( 1) l.e. +1 A R Lösningen kommuniceras på A-nivå, se de allmänna kraven på sidan 4 +1 A K Se avsnittet Bedömda elevlösningar. 11
15 17. Max 0//3 a) Godtagbar ansats, t.ex. tecknar ekvationen x = b ± b 4 för beräkning av funktionens nollställe +1 C P med fortsatt välgrundat resonemang med korrekt svar ( b = ± ) +1 C R Se avsnittet Bedömda elevlösningar. b) Godtagbar ansats, t.ex. visar att maximipunkternas y-koordinat för olika värden på b är 0,5b + b +1 A PL med i övrigt godtagbar lösning med korrekt tecknat funktionsuttryck för g ( g ( x) = 0,5x ) +1 A PL Lösningen kommuniceras på A-nivå, se de allmänna kraven på sidan 4 Kommentar: Lösning som baseras på specialfall är också godtagbar eftersom det i uppgiften är givet att g är en andragradsfunktion. +1 A K Se avsnittet Bedömda elevlösningar. Delprov D 18. Max /0/0 Godtagbar ansats, t.ex. inser att k-värdet för linjen genom origo ska bestämmas med fortsatt enkelt resonemang som visar att linjerna är parallella +1 E R +1 E R Se avsnittet Bedömda elevlösningar. 19. Max /0/0 Godtagbar ansats, t.ex. bestämmer konstanten C, C = +1 E PL med i övrigt godtagbar lösning med korrekt svar (t.ex. (0, )) +1 E PL Se avsnittet Bedömda elevlösningar. 1
16 0. Max /0/0 Godtagbar ansats, bestämmer ett värde korrekt +1 E B med i övrigt godtagbar lösning med korrekt svar ( x = 3 och y = 7 ) +1 E B 1. Max //0 a) Godtagbar ansats, t.ex. ställer upp ett korrekt uttryck för bestämning av M, 16 8,14 10 M = 1,46 5 lg E M med i övrigt godtagbar lösning med godtagbart svar (1,37) +1 E M r b) Godtagbar ansats, t.ex. skriver om ekvationen till 0,1 = lg C P med i övrigt godtagbar lösning med godtagbart svar ( 3,95 10 m ) +1 C P 16. Max 0/3/0 Godtagbar ansats, tolkar problemet och kommer fram till ekvationen = a +1 C M med i övrigt godtagbar lösning med godtagbart svar (1 %) +1 C M Lösningen kommuniceras på C-nivå, se de allmänna kraven på sidan 4 +1 C K Se avsnittet Bedömda elevlösningar. 3. Max 0/0/ Godtagbar ansats, t.ex. bestämmer funktionens riktningskoefficient, 1,5 +1 A B med i övrigt godtagbar lösning med korrekt svar ( f ( x) = 1,5 x + 6 ) +1 A PL 4. Max 0/0/ Godtagbar ansats, inser att en standardavvikelse motsvarar två fack, d.v.s. att fack 7 och 8 tillsammans innehåller 34,1 % av totala antalet kulor med i övrigt godtagbar lösning med korrekt svar (65 stycken) +1 A PL +1 A PL 13
17 5. Max 0/0/4 Godtagbar ansats, t.ex. ställer upp ett korrekt ekvationssystem +1 A M med godtagbar fortsättning där t.ex. priset av plattan och trälisten beräknas, 150 kr/m för plattan och 5 kr/m för trälisten +1 A M med i övrigt godtagbar lösning med korrekt svar (150ab + 41a + 41b + 0,54 ) +1 A M Lösningen kommuniceras på A-nivå, se de allmänna kraven på sidan 4 +1 A K Se avsnittet Bedömda elevlösningar. 14
18 Bedömda elevlösningar Uppgift 10. Elevlösning 10.1 (0 poäng) Kommentar: Elevlösningen visar teckenfel vid insättning i formeln för lösning av andragradsekvationer och uppfyller därmed inte kravet för godtagbar ansats. Lösningen ges 0 poäng. Uppgift 15. Elevlösning 15.1 (1 C R ) Kommentar: Elevlösningen visar en korrekt uppställd ekvation utifrån likformighet vilket motsvarar en godtagbar ansats. Resonemanget i övrigt anses inte välgrundat då en definition av variabeln x och förklarande text saknas. Elevlösningen ges en resonemangspoäng på C-nivå. 15
19 Elevlösning 15. ( C R ) Kommentar: Elevlösningen visar en korrekt uppställd ekvation utifrån likformighet. Variabeln x definieras genom figuren och figuren visar även att kvadratens area är A= x. Slutfrasen 8 = x stämmer anses tillsammans med figuren motsvara kraven för ett välgrundat resonemang. Elevlösningen ges båda resonemangspoängen på C-nivå. 16
20 Uppgift 16. Elevlösning 16.1 (1 A R ) Kommentar: I elevlösningen är påståendet har blivit en rätvinklig triangel otydligt. I övrigt är lösningen godtagbar till och med näst sista raden. Faktoriseringen på sista raden är felaktig och därmed uppfylls inte kraven för den andra resonemangspoängen på A-nivå. 17
21 Elevlösning 16. ( A R ) Kommentar: Elevlösningen visar ett resonemang som anses vara nätt och jämnt godtagbart trots att faktorisering på sista raden saknas. Gällande kommunikation är lösningen ostrukturerad och inte lätt att följa och förstå. Till exempel framgår det inte tydligt att det är den mindre cirkelns radie som ges av c a. Ingen explicit slutsats finns uttryckt i lösningen. Dessa brister gör att kraven för kommunikationspoäng på A-nivå inte anses uppfyllda. Elevlösningen ges två resonemangspoäng på A-nivå. 18
22 Elevlösning 16.3 ( A R och 1 A K ) Kommentar: Elevlösningen behandlar uppgiften i sin helhet. Gällande kommunikation finns förklarande figur och definierade beteckningar. Lösningen är lätt att följa och förstå. Elevlösningen ges samtliga poäng som är möjliga att få. 19
23 Uppgift 17.a Elevlösning 17.a.1 (1 C P och 1 C R ) Kommentar: Elevlösningen behandlar uppgiften i sin helhet. Resonemanget som inleds med Om b 4= 0 en lösning och leder till korrekt svar anses nätt och jämnt vara tillräckligt för resonemangspoäng på C-nivå. 0
24 Uppgift 17.b Elevlösning 17.b.1 ( A PL ) Kommentar: Elevlösningen behandlar uppgiften i sin helhet. På rad fyra definieras gx ( ) felaktigt, men används inte. Gällande kommunikation anses lösningen inte vara lätt att följa och förstå då förklarande text samt vissa steg i beräkningarna saknas. Till exempel förklaras inte varför maximipunkten är där x= b. Sammantaget ges lösningen två problemlösningspoäng på A-nivå. 1
25 Uppgift 18. Elevlösning 18.1 (1 E R ) Kommentar: I elevlösningen visas insikt om att k-värdet för linjen genom origo ska bestämmas. En grafisk lösningsmetod är inte tillräckligt noggrann för att kunna avgöra om linjerna är parallella. Lösningen ges ansatspoängen på E-nivå.
26 Uppgift 19. Elevlösning 19.1 (1 E PL ) Kommentar: Uppgiften är löst med digitalt hjälpmedel. Det redovisas dock inte hur det digitala hjälpmedlet har använts varken för bestämning av konstanten C = eller för bestämning av punkten (0, ). Sammantaget anses lösningen motsvara en godtagbar ansats och ges den första problemlösningspoängen på E-nivå. Uppgift. Elevlösning.1 (0 poäng) Kommentar: Elevlösningen visar en felaktigt tecknad ekvation och därmed uppfylls inte kraven för en godtagbar ansats. Elevlösningen ges 0 poäng. 3
27 Elevlösning. ( C M ) Kommentar: Elevlösningen ger ett korrekt svar utifrån ett antagande om ett ursprungspris. Gällande kommunikation definieras a som Procentuella ökning och på näst sista raden används likhetstecknet felaktigt då 1,05 omvandlas till 0,5 % utan motivering. Det saknas även ett antagande om att ursprungspriset är 1. Dessa brister gör att kraven för kommunikationspoäng på C-nivå inte anses uppfyllda. 4
28 Elevlösning.3 (1 C M och 1 C K ) Kommentar: Elevlösningen visar en godtagbar ansats med en korrekt beräkning av förändringsfaktorn. Tolkningen av förändringsfaktorn är felaktig och därmed uppfylls inte kraven för den andra modelleringspoängen. Gällande kommunikation är variabeln x korrekt definierad och lösningen är möjlig att följa och förstå trots att ett mellanled vid beräkningen av förändringsfaktorn saknas. Sammantaget ges elevlösningen den första modelleringspoängen samt kommunikationspoäng på C-nivå. 5
29 Uppgift 5. Elevlösning 5.1 (1 A M och 1 A K ) Fortsättning på nästa sida. 6
30 Kommentar: Elevlösningen behandlar uppgiften i sin helhet. När ekvationssystemet ställs upp görs fel i ramlängden och motsvarande fel görs då det generella uttrycket ställs upp. Den felaktiga bestämningen av ramlängden gör att varken priserna eller det generella uttrycket blir korrekt beräknade. Gällande kommunikation är lösningen lätt att följa och förstå och matematiska symboler är korrekt använda. Felen som görs i början påverkar inte uppgiftens svårighetsgrad och kraven för kommunikationspoäng på A-nivå anses därmed vara uppfyllda. Sammantaget ges elevlösningen en modelleringspoäng på A-nivå och en kommunikationspoäng på A-nivå. 7
31 Elevlösning 5. (3 A M och 1 A K ) Fortsättning på nästa sida. 8
32 Kommentar: Elevlösningen behandlar uppgiften i sin helhet. Gällande kommunikation är lösningen lätt att följa och förstå eftersom såväl enheter som variabler sätts ut och används korrekt. Elevlösningen ges samtliga möjliga poäng. 9
NpMa2c vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 20 C- och 17 A-poäng.
NpMac vt 015 Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-17. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal.
a) Ange ekvationen för den räta linjen L. (1/0/0)
Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
7. Max 0/1/0. 8. Max 0/2/1. 9. Max 0/0/ Max 2/0/0
7. Max 0/1/0 14 Korrekt svar (t.ex. 16514 = 44 a ) +1 C M 8. Max 0/2/1 a) Godtagbart angivet intervall, t.ex. då x är mellan 3 och 4 +1 C B med korrekt använda olikhetstecken ( 3 < x < 4 ) +1 C K b) Korrekt
7. Max 0/2/1. 8. Max 0/1/1. 9. Max 2/0/0
7. Max 0//1 a) Godtagbart angivet intervall, t.ex. då x är mellan 3 och 4 +1 C B med korrekt använda olikhetstecken ( 3 < x < 4 ) +1 C K b) Korrekt svar ( x = och x = 4 ) +1 A B 8. Max 0/1/1 a) Korrekt
NpMa2b vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift -9. Endast svar krävs. Uppgift 0-7. Fullständiga lösningar krävs. 0 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser Provet
Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) x 5 (1/0/0). Koordinatsystemet
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
NpMa2c vt 2015. Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 20 C- och 17 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-17. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.
Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
NpMa2b ht Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 73 poäng varav 27 E-, 27 C- och 19 A-poäng. Kravgräns för provbetyget
7. Max 0/1/1. Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar
7. Max 0/1/1 Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar +1 C PL +1 A PL 8. Max 0/1/1 a) Korrekt svar (Alternativ E: 5 y 3 ) +1 C B b) Godtagbart svar (0) +1 A B 9. Max
NpMa2b vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 67 poäng varav 26 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
NpMa2a vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-8. Endast svar krävs. Uppgift 9-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
NpMa2a ht Max 0/0/3
14. Max 0/0/3 Godtagbar ansats, t.ex. sätter ut lämpliga beteckningar och tecknar någon ekvation som krävs för bestämning av a +1 A PL med i övrigt godtagbar lösning med korrekt svar ( a = 12 ) +1 A PL
NpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
NpMa2b vt 2015. Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-17. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Tips 1. Skolverkets svar 14
JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte
16. Max 2/0/ Max 3/0/0
Del III 16. Max 2/0/0 Godtagbar ansats, visar förståelse för likformighetsbegreppet, t.ex. genom att bestämma en tänkbar längd på sidan med i övrigt godtagbar lösning med korrekt svar (8 cm och 18 cm)
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.
Delprov D Provtid Hjälpmedel Uppgift 18-5. Fullständiga lösningar krävs. 10 minuter. Digitala verktyg, formelblad och linjal. Kravgränser Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Bedömningsanvisningar
NpMab vt 01 Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Bedömningsanvisningar
Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
NpMa2a vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-8. Endast svar krävs. Uppgift 9-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov D Provtid Hjälpmedel Uppgift 15-. Fullständiga lösningar krävs. 10 minuter. Digitala verktyg, formelblad och linjal. Kravgränser Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans
Ma2bc. Komvux, Lund. Prov 2. a-övningsprov.
Ma2bc. Komvux, Lund. Prov 2. a-övningsprov. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del D Kravgränser 110 minuter för Del B och Del D. Du får påbörja del D (och börja använda
b) Beräkna rektangelns omkrets. 3/0/0 b) Hur högt når kulan som högst? 4/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Rektangeln nedan har arean 77 cm 2. Längden är 4 cm längre än bredden. a) Teckna ett uttryck för att beräkna rektangelns
Bedömningsexempel. Matematik kurs 2b och 2c
Bedömningsexempel Matematik kurs b och c Innehåll Inledning... Allmänna riktlinjer för bedömning... Bedömningsanvisningar... 3 Bedömning av skriftlig kommunikativ förmåga... 3 Provsammanställning... 4
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Uppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Ma2bc. Komvux, Lund. Prov 1. 1-Övningsprov.
Ma2bc. Komvux, Lund. Prov 1. 1-Övningsprov. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 110 minuter för Del B, C och Del D. Du får påbörja del D (och börja använda
b) 2/0/0 b) 2/0/0 Lös ekvationerna. Redovisa din lösning och avrunda ditt svar till tre decimaler b) 4/0/0
Övningsuppgifter; Exponentialekvationer och logaritmer 1) Lös ekvationerna. Svara exakt. x 5 = 11 5 x = 11 2/0/0 2) Lös ekvationerna x 3,5 = 1589 5 2 x = 34 2/0/0 3) Lös ekvationerna. edovisa din lösning
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 120 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Uppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Matematik 2b (Typ) E-uppgifter på hela kursen
Matematik 2b (Typ) E-uppgifter på hela kursen I Räta linjens ekvation och linjära modeller (1 6) II Ekvationssystem (7 11) III Algebra (12 14) IV Andragradsfunktioner ( inklusive funktioner med komplexa
Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
a) Ange ekvationen för den räta linjen L. (1/0/0) Varje tal nedan motsvaras av en markerad punkt på tallinjen.
Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Uppgift 1-7. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-7. Endast svar krävs. Uppgift 8-14. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består av
Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.
Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean
y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens
Fler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt
Mål Likformighet, Funktioner och Algebra år 9
Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter
Ma2bc. Komvux, Lund. Prov
Ma2bc. Komvux, Lund. Prov 1. 151013. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 120 minuter för Del B, C och Del D. Du får påbörja del D (och börja använda
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009
Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder
Bedömningsexempel. Matematik kurs 2b och 2c
Bedömningsexempel Matematik kurs 2b och 2c Innehåll Inledning... 2 Allmänna riktlinjer för bedömning... 2 Bedömningsanvisningar... 3 Bedömning av skriftlig kommunikativ förmåga... 3 Provsammanställning...
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.
17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 00. Anvisningar Provtid
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011
Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska
b) (A+B)(2m 3)=6m2 5:c 6 3/0/0 3) Förenkla uttrycket (3œ 2)2 + 4(3œ - 1) sä längt sommôjligt. O/l/O
" í*4 r Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Förenkla: 20102 (æ + 1)(ac 1) 2/0/0 2) Ange A och B så att likheterna stämmer. Observera a2 ta och B är olika i de
MATEMATIK FÖR KURS B (hela kursen)
N ATUR OCH K ULTURS P ROV VÅRTERMINEN 1998 MATEMATIK FÖR KURS B (hela kursen) PROVET BESTÅR AV TVÅ DELAR Del 1 testar huvudsakligen enkla rutinuppgifter på godkändnivå. Del 2 omfattar dessutom begreppsförståelse
Gamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...
DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 005. Anvisningar NATIONELLT
vux GeoGebraexempel 2b/2c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 2b/2c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 2b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1a Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Exempelprov. Matematik. Bedömningsanvisningar
Exempelprov Matematik Bedömningsanvisningar 1b BEDÖMNINGSANVISNINGAR, EXEMPELPROV MATEMATIK 1B 2 Innehållsförteckning 1. Allmän information om bedömningen av elevernas prestationer på exempelprovet...
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5
freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast
Exempelprov. Matematik. Bedömningsanvisningar
Eempelprov Matematik Bedömningsanvisningar 1a BEDÖMNINGSANVISNINGAR, EXEMPELPROV MATEMATIK 1A 2 Innehållsförteckning 1. Allmän information om bedömningen av elevernas prestationer på eempelprovet... 4
Del 1 Med miniräknare Endast svar! 1. Till höger visas två trianglar T 1 och T 2, som är likformiga. Bestäm alla vinklar i triangel T 1.
Matematik 2b Repetitionsprov Potenser, potensekvationer, eponentialekvationer, eponentialfunktioner, randvinklar, likformighet, kongruens, Pythagoras sats, koordinatgeometri Del 1 Med miniräknare Endast
TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:
TENTAEN Kursnummer: HF00 atematik för basår I oment: TENA / TEN Program: Tekniskt basår Rättande lärare: Niclas Hjelm Eaminator: Niclas Hjelm Datum: Tid: 07--8 08:00-:00 Hjälpmedel: Formelsamling: ISBN
Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Ma2bc. Prov
Ma2bc. Prov 1. 160317. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 120 minuter för Del B, C och Del D. Gör du provet som inlämning är det inte betygsgrundande,
För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar. Uppgift Godtagbara svar 15. a) 1 Redovisning med korrekt svar.
Bedömningsanvisningar Del III Till så gott som alla uppgifter ska eleverna lämna fullständiga lösningar. Elevlösningarna ska bedömas med E-, C- och A-poäng. Positiv poängsättning ska tillämpas, dvs. eleverna
y = 3x 5 Repetitionsuppgifter; Grafer och funktioner Vilken av följande funktioner är en exponentialfunktion? Vilken värdemängd har funktionen?
Repetitionsuppgifter; Grafer och funktioner 1) Vilken av följande funktioner är en exponentialfunktion? A y = 3x 5 y = x 2 4 C y = 30 1, 4 x 1/0/0 2) Vilken värdemängd har funktionen? 1/0/0 3) Ange ekvationen
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Formelhantering Formeln v = s t
Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller
Anvisningar Delprov B
DIGITALA VERKTYG ÄR INTE TILLÅTNA Anvisningar Delprov B Provtid 60 minuter för Delprov B. Hjälpmedel Uppgifter Kravgränser Tillåtna hjälpmedel på Delprov B är formelblad och linjal. Detta delprov består
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till
Studieplanering till Kurs 2b Grön lärobok
Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad
Exempelprov. Matematik. Bedömningsanvisningar
Exempelprov Matematik Bedömningsanvisningar 1c BEDÖMNINGSANVISNINGAR, EXEMPELPROV MATEMATIK 1C 2 Innehållsförteckning 1. Allmän information om bedömningen av elevernas prestationer på exempelprovet...