Ma3bc. Komvux, Lund. Prov kap
|
|
- Gunilla Bergqvist
- för 8 år sedan
- Visningar:
Transkript
1 Ma3bc. Komvux, Lund. Prov kap (Lärare: Ingemar Carlsson)
2 Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du får påbörja del D (och börja använda miniräknare) först efter att du lämnat in alla dina lösningar och svar på Del B och C. Gör du provet som inlämning är det inte betygsgrundande, men du rekommenderas ändå följa anvisningarna för att få en bra förberedelse inför kursprovet som har likartade anvisningar. Del B och C: Formelblad och linjal. Del D: Digitala verktyg (miniräknare), formelblad och linjal. Muntlig del. Ges inte vid detta tillfälle. Lösningar och svar direkt på uppgiftsbladet. Det står tydligt angivet ifall endast svar krävs. Du får använda löspapper om din lösning inte får plats. Denna del består av uppgifter där det om inget annat anges krävs att du på separat rutat papper redovisar dina lösningar förklarar/motiverar dina tankegångar ritar figurer vid behov. svarar tydligt, exakt om inget annat anges, och på enklaste form. Poängen på varje uppgift är angiven som (E/C/A). Poängen är ledtal för nivåbestämning och provbetyg. Prov på del av kursen är lätt vägande betygsunderlag. Nationellt kursprov är tungt vägande betygsunderlag. Delprov skrivet på plats kan endast ge täckande underlag upp till D. Högre nivåer kan ses som en försiktig prognos men inte som tillräckligt betygsunderlag Se mer om bedömning i studiehandledningen. Undre gräns för provbetyget. E: 1) 70% av max E. C och A-poäng får räknas. 2) Inget krav. D: 1) 70% av max E. C och A-poäng får räknas. 2) 30% av max C. A-poäng får räknas. C: 1) 75% av max E. C och A-poäng får räknas. 2) 50% av max C. A-poäng får räknas. B: 1) 75% av max E+C. A-poäng får räknas. 2) 30% av max A. A: 1) 80% av max E+C. A-poäng får räknas. 2) 50% av max A. Tabellen motsvarar gränsernas nivå på nationella prov. Precis som vid dessa korrigeras kravgränserna vid behov någon eller några poäng med hänsyn till uppgifternas svårighetsgrad inom E, C respektive A nivån. Om C- eller A-poäng respektive A-poäng behövs för att klara 1) kravet på bredd, får inte samma poäng användas för att klara 2) kravet på djup, d v s en poäng får inte räknas två gånger. Räck upp handen om något är oklart. Ev korrigeringar och kompletteringar sägs en gång av läraren och skrivs därefter upp på tavlan (för att störa minimalt). Vid vissa extraprov, extratillfällen, finns inte Ma-lärare och då ger inte vakten någon extra info. Du får då hitta bästa sättet själv att hantera oklarheten.
3 DEL B och C. Ingen miniräknare. Detaljerade provanvisningar se separat papper. Där inget annat anges ska du redovisa fullständig lösning, svara exakt och på enklaste form. 1. Figuren visar grafen till y = f(x). (4/0/0) Ange alla punkter (A, B, C, D) där följande gäller: f (x) > 0: f ʹ(x) > 0: f (x) = 0: f (x) < x: f ʹ(x) < f (x): (Endast svar krävs) 2. (3/0/0) Låt f(x) = 3x a. Där a är en konstant. Förenkla så långt som möjligt a) b) f(1+h) f(1) h f(x+h) f(x) h c) Nämn ett sammanhang inom den s k matematiska analysen (differential och integralkalkyl) där dessa båda kvoter förekommer
4 3. (4/1/0) Lös ekvationerna. a) 27 4x 4 = 6 b) x 2 + x 3 = 6x c) (x + 29) (6 + 4x) (3 x) = 0 d) 3 x + 2x x 1 = 2 1 x e) Är vänsterledet i uppgift 3b) ett polynom? Motivera
5 Bedömning av säkerheten (C och A nivå) i uppgift 1-3. (0/1/1) Nivåkriterium: eleven hanterar flera procedurer och löser uppgifter av standardkaraktär med säkerhet 4. För funktionen f gäller att f(x) = a kx där a och k är konstanter. a > 1 och k > 1. Definitionsmängden utgörs av alla reella tal. Vilken eller vilka av påståendena är korrekt? (Ringa in de korrekta påståendena här på uppgiftsbladet). A. f är en diskret funktion. B. f är en diskontinuerlig funktion. C. f är avtagande för alla x. D. f är en exponentialfunktion. E. f har egenskapen att för alla x gäller f(x) < f (x) då a = e och k <1. (1/1/1) 5. I a-d nedan krävs endast svar a) Vilket gradtal har polynomet 36x x 3? Svar: (2/2/0) b) Faktorisera så långt som möjligt 36x x 3 = c) För vilket eller vilka värden på x är följande uttryck ej definerat? 36x x 3 x(x 6) Svar: e) Bestäm gränsvärdet x3 lim (36x x 6 x(x 6) )
6 6. Bestäm ekvationen för tangenten till kurvan y = e 4x där x = 0,25. (0/2/0) 7. a) Bestäm f (2) om f(x)= 2x x 32 2 b) Lös ekvationen g (x) = 8. om (x) = 4x. (3/1/0) (1/1/0)
7 Lämna fullständiga lösningar på separat rutat papper till 8ab (Ma3b) och 8 och 9 (Ma3c) Ma3b 8. Betrakta följande geometriska serie 3, 3 2, n-1 a) Bestäm värdet på den nionde termen i summan b) Bestäm seriens summa då den innehåller nio termer. (2/0/0) Ma3c 8. En cirkel har ekvationen 49 = (x 12) 2 + y 2 Bestäm avståndet till origo, för den punkt på cirkeln som ligger närmast origo. (1/0/0) Ma3c 9. Skissa en enhetscirkel och markera vilken eller vilka vinklar v, i intervallet 0 v 180 som är lösningar till tan v = 1. (1/0/0)
8 DEL D. Med miniräknare. Detaljerade provanvisningar se separat papper D1. I diagrammet nedan är grafen till funktionen f(x) = x 2 x ritad som y = f(x). I uppgift b) ska du enbart använda figuren i a) c) d) e) ska du använda funktionsuttrycket. (3/2/1) a) Bestäm f (0,7) med hjälp av deriveringsregler. b) Bestäm f (0,7) grafiskt genom att rita och läsa av i figuren ovan. c) Bestäm f (0,7) numeriskt med differenskvot framåt, d v s (f(0,7+h) f(0,7))/h, och h = 0,1 d) Bestäm f (0,7) algebraiskt med hjälp av derivatans definition. e) Hur får du fram f (0,7) så att hela beräkningen genomförs av en grafritande räknare? Du kan t ex svara genom att ange sekvensen på de knapptryckningar som krävs på din grafritande räknare. Om det finns flera möjligheter på din räknare räcker det att ange ett sätt.
9 D2. (2/2/1) Bestäm alla extrempunkter samt största och minsta värde för funktionen f(x) i intervallet 3 x 3. Bestäm också typ av extrempunkter (max eller min). Lösningen ska kommuniceras med matematisk analys d v s med derivata - men du får gärna felsöka din lösning med räknare. f(x) = x 3 + 6x 2 15 x 20
Ma3bc. Komvux, Lund. Prov kap3-4/
Ma3bc. Komvux, Lund. Prov kap3-4/5. 150513. (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 110 minuter för Del B, C och Del D. Du
Läs merMa2bc. Prov
Ma2bc. Prov 1. 160317. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 120 minuter för Del B, C och Del D. Gör du provet som inlämning är det inte betygsgrundande,
Läs merMa2bc. Komvux, Lund. Prov
Ma2bc. Komvux, Lund. Prov 1. 151013. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 120 minuter för Del B, C och Del D. Du får påbörja del D (och börja använda
Läs merMa2bc. Komvux, Lund. Prov 2. a-övningsprov.
Ma2bc. Komvux, Lund. Prov 2. a-övningsprov. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del D Kravgränser 110 minuter för Del B och Del D. Du får påbörja del D (och börja använda
Läs merMa2bc. Komvux, Lund. Prov 1. 1-Övningsprov.
Ma2bc. Komvux, Lund. Prov 1. 1-Övningsprov. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 110 minuter för Del B, C och Del D. Du får påbörja del D (och börja använda
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
NpMa3c ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
NpMab ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merMatematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp
Kursprov, höstterminen 2016 Matematik Delprov B 1b Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merSkriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in.
NpMa3c ht 2012 Del B Del C Provtid Hjälpmedel Kravgränser Endast svar krävs Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in. NpMa3c ht 2012 Del B:Endast svar krävs 1. x x
Läs merProvet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merUppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merProvet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merMatematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp
Kursprov, höstterminen 2016 Matematik Delprov B 1a Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merNATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009
Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder
Läs merUppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Läs merMAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp
MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
Läs merUppgift 1-7. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-7. Endast svar krävs. Uppgift 8-14. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består av
Läs merNpMa2c vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 20 C- och 17 A-poäng.
NpMac vt 015 Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-17. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal.
Läs merMatematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp
Kursprov, vårterminen 2013 Matematik Del B Elevhäfte 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merMatematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp
Kursprov, vårterminen 2013 Matematik Del B Elevhäfte 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
Läs mervux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs merTips 1. Skolverkets svar 14
JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte
Läs merNationellt kursprov i MATEMATIK KURS A Våren 2005. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Anvisningar Provtid Hjälpmedel
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merUppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merKan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
Läs merPlanering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs merUppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar NATIONELLT
Läs merUPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till
Läs merNpMa2a vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-8. Endast svar krävs. Uppgift 9-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3
freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte
Läs merProvet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 53 poäng varav 22 E-, 18 C- och 13 A-poäng.
NpMaa ht 013 Delprov D Provtid Hjälpmedel Uppgift 15-3. Fullständiga lösningar krävs. 10 minuter. Digitala verktyg, formelblad och linjal. Kravgränser Provet består av tre skriftliga delprov (Delprov B,
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs mer6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Läs merNpMa2b vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift -9. Endast svar krävs. Uppgift 0-7. Fullständiga lösningar krävs. 0 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser Provet
Läs merNpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Läs merNATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Läs merNp MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Läs merDIGITALA VERKTYG ÄR INTE TILLÅTNA
DIGITALA VERKTYG ÄR INTE TILLÅTNA Anvisningar del B Tidsåtgång Cirka 60 minuter för del B. Hjälpmedel Uppgifter Tillåtna hjälpmedel på del B är formelblad och linjal. Denna del består av uppgifter som
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 005. Anvisningar NATIONELLT
Läs merHögskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Läs merNATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009
Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 009 40 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder
Läs merMatematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp
Kursprov, vårterminen 2013 Matematik Del B Elevhäfte 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merMatematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Läs mer5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.
Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter
Läs merNpMa3c Muntligt delprov Del A ht 2012
Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater
Läs merG VG MVG Programspecifika mål och kriterier
Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår
Läs merMatematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merChecklista för funktionsundersökning
Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara
Läs merMatematik. Kursprov, höstterminen Delprov D. Elevens namn och klass/grupp
Kursprov, höstterminen 2016 Matematik Delprov D 1b Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merNATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar
Läs merDIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...
DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9
Läs merHEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Läs merNpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.
NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B VÅREN
freeleaks NpMaB vt000 1() Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 000 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B hör
Läs merMatematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Läs merUppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merMatematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Läs merPlanering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
Läs merMatematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6
freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast
Läs merMatematik C (MA1203)
Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven
Läs merBetygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
Läs mer5 Blandade problem. b(t) = t. b t ln b(t) = e
5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen
Läs merProvet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov D Provtid Hjälpmedel Uppgift 15-. Fullständiga lösningar krävs. 10 minuter. Digitala verktyg, formelblad och linjal. Kravgränser Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans
Läs merDel I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.
Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera
Läs merNp MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Läs merNATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Läs merMatematik. Kursprov, höstterminen Delprov D. Elevens namn och klass/grupp
Kursprov, höstterminen 2016 Matematik Delprov D 1c Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4
freeleaks NpMaB ht000 () Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 000 Del I, 0 kortsvarsuppgifter med miniräknare 4 Del II, 9 uppgifter med miniräknare, fullständiga lösningar 7 Del
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Lösningar till kryssproblemen 1-5. Uppgifter till lektion 1: = 10 x. = x 10.
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 2010-10-27 Uppgifter till lektion 1: 1. Lös olikheten 2x + 1 > 3. Lösningar till kryssproblemen 1-5. Lösning. Olikheten
Läs merDIGITALA VERKTYG ÄR INTE TILLÅTNA
DIGITALA VERKTYG ÄR INTE TILLÅTNA Anvisningar del B Tidsåtgång Cirka 60 minuter för del B. Hjälpmedel Uppgifter Tillåtna hjälpmedel på del B är formelblad och linjal. Denna del består av uppgifter som
Läs merMatematik. Kursprov, vårterminen Del D. Elevhäfte. Elevens namn och klass/grupp
Kursprov, vårterminen 2013 Matematik Del D Elevhäfte 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merTentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merKravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.
Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst
Läs merNATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011
Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska
Läs merNär vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1
Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna
Läs merDagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Läs merPreliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Läs merExempelprov. Matematik. Bedömningsanvisningar
Exempelprov Matematik Bedömningsanvisningar 1b BEDÖMNINGSANVISNINGAR, EXEMPELPROV MATEMATIK 1B 2 Innehållsförteckning 1. Allmän information om bedömningen av elevernas prestationer på exempelprovet...
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5
freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast
Läs merMatematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Läs merProvet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.
Delprov D Provtid Hjälpmedel Uppgift 18-5. Fullständiga lösningar krävs. 10 minuter. Digitala verktyg, formelblad och linjal. Kravgränser Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans
Läs merNATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009
Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder
Läs merUndervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203
Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
Läs merUppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs mer4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Läs mer