Matematik C (MA1203)
|
|
- Oliver Blomqvist
- för 8 år sedan
- Visningar:
Transkript
1 Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium
2 Mål och betygskriterier Ma C (MA103) Matematik Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt för att formulera och lösa problem i ett steg. Eleven genomför matematiska resonemang såväl muntligt som skriftligt. Eleven använder matematiska termer, symboler och konventioner samt utför beräkningar på ett sådant sätt att det är möjligt att följa, förstå och pröva de tankar som kommer till uttryck. Eleven skiljer gissningar och antaganden från givna fakta och härledningar eller bevis. Kriterier för betyget Väl godkänd Eleven använder lämpliga matematiska begrepp, metoder, modeller och tillvägagångssätt för att formulera och lösa olika typer av problem. Eleven deltar i och genomför matematiska resonemang såväl muntligt som skriftligt. Eleven gör matematiska tolkningar av situationer eller händelser sam genomför och redovisar sitt arbete med logiska resonemang såväl muntligt som skriftligt. Eleven använder matematiska termer, symboler och konventioner på sådan sätt att det är lätt att följa, förstå och pröva de tankar som kommer till uttryck såväl muntligt som skriftligt. Eleven visar säkerhet beträffande beräkningar och lösning av olika typer av problem och använder sina kunskaper från olika delområden av matematiken. Eleven ger eempel på hur matematiken utvecklats och använts genom historien och vilken betydelse den har i vår tid inom några olika områden. Kriterier för betyget Mycket väl godkänd Eleven formulerar och utvecklar problem, väljer generella metoder och modeller vid problemlösning samt redovisar en klar tankegång med korrekt matematiskt språk. Eleven analyserar och tolkar resultat från olika typer av matematisk problemlösning och matematiska resonemang. Eleven deltar i matematiska samtal och genomför såväl muntligt som skriftligt matematiska bevis. Eleven värderar och jämför olika metoder, drar slutsatser från olika typer av matematiska problem och lösningar samt bedömer slutsatsernas rimlighet och giltighet. Eleven redogör för något av det inflytande matematiken har och har haft för utvecklingen av vårt arbets- och samhällsliv samt för vår kultur.
3 Mål och betygskriterier Ma C (MA103) Matematik Lokal tolkning av betygskriterierna, Värmdö Gymnasium GODKÄND Du skall kunna lösa enklare typuppgifter. Du skall, med visst stöd, kunna redovisa lösningar så att andra kan följa din tankegång. Du skall kunna använda grafritande räknare eller dator som hjälpmedel för att utföra matematiska beräkningar och funktionsritningar. VÄL GODKÄND Du skall kunna lösa enklare typuppgifter samt kunna kombinera kunskaper och metoder från flera olika områden för att lösa uppgifter där detta krävs. Du skall kunna redovisa din tankegång så tydligt att en oinsatt skall kunna följa den, samt använda nödvändiga och tydligt ritade figurer. Du skall kunna använda grafritande räknare eller dator som hjälpmedel för att utföra matematiska beräkningar och funktionsritningar. MYCKET VÄL GODKÄND Du skall kunna lösa enklare typuppgifter samt kunna kombinera kunskaper och metoder från flera olika områden för att lösa uppgifter där detta krävs. Du skall även kunna lösa uppgifter som kräver att du generaliserar tidigare kunskaper på nya problem. Du skall kunna göra självständiga iakttagelser, tolka och värdera dina erhållna resultat och dessutom dra egna, relevanta slutsatser från dina resultat. Du skall kunna redovisa din tankegång så tydligt att en oinsatt skall kunna följa den, samt använda nödvändiga och tydligt ritade figurer. Du skall även konsekvent kunna använda de korrekta matematiska begreppen och det matematiska språket i sitt rätta sammanhang. Du skall kunna använda grafritande räknare eller dator som hjälpmedel för att utföra matematiska beräkningar och funktionsritningar.
4 Mål och betygskriterier Ma C (MA103) Matematik Aritmetik Efter avslutad kurs skall eleven kunna tolka och använda logaritmer och potenser med reella eponenter samt kunna tillämpa dessa vid problemlösning kunna använda matematiska modeller av olika slag, däribland även sådana som bygger på summan av en geometrisk talföljd Eempel på uppgifter på olika betygsnivåer GODKÄND 1. Lös ekvationerna a) 6 6 = 84 b) 10 = 141 c) 3 + lg = 4, 5 d) 4 e = 17. Vilken ränta måste en bank (minst) betala för att 500 kr ska bli 1000 kr på 10 år? 3. Beräkna den geometriska summan , , ,05 5 VÄL GODKÄND 1. Lös ekvationen e e 3 = 0.. Vattendjupet i en nybyggd brunn sjunker det första året med 86 cm. I fortsättningen uppskattar man att nivån varje år sjunker med en fjärdedel av vad den sjunkit föregående år. Hur mycket kommer vattendjupet att minska de första 0 åren? 3. En patient får en injektion av ett preparat i blodet. Koncentrationen från början är 3,00 mg/ml. Efter 1 min har koncentrationen gått ner till,35 mg/ml. Preparatet är verksamt så länge koncentrationen överstiger 0,80 mg/ml. Hur länge är en sådan injektion verksam om koncentrationen avtar eponentiellt? MYCKET VÄL GODKÄND 1. En eponentialfunktion går genom punkterna ( ; 40) och (40 ; ). Ange ett uttryck för funktionen.
5 Mål och betygskriterier Ma C (MA103) Matematik Algebra och funktionslära Efter avslutad kurs skall eleven kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning med fördjupad kunskap om sådana begrepp och metoder som ingår i tidigare kurser kunna ställa upp, förenkla och använda uttryck med polynom samt beskriva och använda egenskaper hos några polynomfunktioner och potensfunktioner kunna ställa upp, förenkla och använda rationella uttryck samt lösa polynomekvationer av högre grad genom faktorisering känna till hur datorer och grafiska räknare kan utnyttjas som hjälpmedel vid studier av matematiska modeller i olika tillämpade sammanhang Eempel på uppgifter på olika betygsnivåer GODKÄND 1. En bakteriekultur tillväer eponentiellt enligt 000 y = 19 + där y är antalet bakterier efter timmar. a) Visa grafiskt hur antalet bakterier väer med hjälp av grafritande räknare. b) Bestäm tillväthastigheten då = 4, 5. Derivera numeriskt med hjälp av grafritande räknare.. Vilken graf hör till vilken funktionstyp. a) Eponentialfunktion b) Linjär funktion c) Andragradsfunktion
6 Mål och betygskriterier Ma C (MA103) Matematik Förenkla uttrycken så långt som möjligt a) ( + 3)( 3) b) c) ( y + 5) ( y + 10) 4. I vilka punkter skär grafen till p() koordinatalarna om y = p ( ) = ( + 3)( + 5)? 5. Faktorisera polynomet p( ) = + så långt som möjligt. VÄL GODKÄND 1. Lös ekvationen = 0. Låt funktionen f definieras av f ( ). Visa att = f ( ) f ( + 5) = 0 ( + ). MYCKET VÄL GODKÄND 1. Lös ekvationen =. Svara eakt.
7 Mål och betygskriterier Ma C (MA103) Matematik Differentialkalkyl Efter avslutad kurs skall eleven kunna förklara, åskådliggöra och använda begreppen ändringskvot och derivata för en funktion samt använda dessa för att beskriva egenskaper hos funktionen och dess graf kunna härleda deriveringsregler för några grundläggande potensfunktioner, summor av funktioner samt enkla eponentialfunktioner och i samband därmed beskriva varför och hur talet e införs kunna dra slutsatser om en funktions derivata och uppskatta derivatans värde numeriskt då funktionen är given genom sin graf kunna använda sambandet mellan en funktions graf och dess derivata i olika tillämpade sammanhang med och utan grafritande hjälpmedel. Eempel på uppgifter på olika betygsnivåer GODKÄND 1. En kompis till dig, som läser samma mattekurs som du, kommer fram till dig och säger - Jag fattar ingenting av det här med derivata. Ge din kompis ett eempel där derivata kan användas.. Figuren nedan visar grafen till y = f ( ). I vilka av punkterna A H gäller det att a) f ( ) = 0 b) ( ) < 0 f c) f ( ) > 0 3. Bestäm y () om 5 3 y ( ) = Feberkurvan (T C) hos en person följer under tre veckor formeln T( ) = 37,0 + 0,6 0,03, där = antalet dagar sedan insjuknandet. Bestäm när febertoppen inträffar och hur hög febern är då. Använd derivatan för att visa att detta verkligen är ett maimum. 5. Derivera a) 4 g ( ) = b),5 c) h( ) = e 3
8 Mål och betygskriterier Ma C (MA103) Matematik Använd din grafräknare för att numeriskt bestämma f (5,5) om f ( ) = 6. OBS! Redovisa stegen på räknaren, vad du matar in för att få resultatet. 7. Temperaturen på landet är T C när det gått t timmar sedan midnatt. Sambandet mellan tiden som gått och temperaturen är T ( t ) = 17 t. Beräkna och förklara med ord vad detta resultat innebär Undersök om funktionen y ( ) = 6 15 har några etremvärden och bestäm i så fall dessas koordinater (,y). Använd dina kunskaper om derivatan för att lösa uppgiften! VÄL GODKÄND 1. Se uppgift 1 på godkänd-nivån. Hjälp din kompis genom att förklara vad derivata är. Förklara så utförligt du kan och på så många sätt du kan, samt ge en teoretisk förklaring till begreppet derivata.. Funktionen y = 8,3 3 har en tangent i punkten ( 1; 74,7 ). Ange ekvationen för denna tangent. 3. Bestäm, med hjälp av derivatan, cylinderns maimala volym. Svara med fyra gällande siffror MYCKET VÄL GODKÄND 3 1. Lös ekvationen f ( ) f ( ) = f (9) då f ( ) = 8 5. Svara eakt.. En korvhandlare köper in korv för 5 kr/st. Han brukar sälja dem för 7 kr/st. En normal dag brukar han sälja 100 korvar. (Han tjänar alltså bara 00 kr per dag.) Han funderar på att höja priset på korven, men tror att varje krona han höjer priset över de 7 kronorna så förlorar han 5 kunder. Ett korvpris på 8 kr/st betyder endast 95 sålda korvar. Om priset är 9 kr/st, kan han sälja 90 korvar o.s.v. Bestäm med hjälp av derivata det korvpris som ger bästa möjliga förtjänst åt vår korvhandlare.
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
G VG MVG Programspecifika mål och kriterier
Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår
Ämne - Matematik (Gymnasieskola före ht 2011)
Ämne - Matematik Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
Matematik E (MA1205)
Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND
Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203
Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor
Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt
Planering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen
Olika styrdokument har olika dignitet 1. Skollagen 2. Läroplanen Lpo 94 / Lpf 94 3. Grundskole- / Gymnasieförordningen Riksdagen Regeringen Utskott SOU Departement (utbildnings-) Statliga verk (Skolverket)
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
Bedömingsanvisningar Del II vt 2010
Bedömingsanvisningar Del II vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Bedömningsanvisningar Del II... 4 Kravgränser... 16 Maxpoäng...
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Inledning...3. Kravgränser...21. Provsammanställning...22
Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21
NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009
Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2003
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 2013. Anvisningar NATIONELLT
NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 31 december 2013. Anvisningar NATIONELLT
Matematik B (MA1202)
Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt
PRÖVNINGSANVISNINGAR
Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.
Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är
Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
SKOLFS 2006:xx Skolverkets föreskrifter om kursplaner och betygskriterier i ämnet Matematik i gymnasieskolan den xx xxxxxx 2006
SKOLFS 2006:xx Skolverkets föreskrifter GY07:143 om kursplaner och betygskriterier i ämnet Utkom från trycket Matematik i gymnasieskolan den xx xxxxxx 2006 2006-08-21 Skolverket meddelar med stöd av 1
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 30 juni 2013. Anvisningar NATIONELLT
MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.
MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning
Studieanvisning till Matematik 3000 kurs C/Komvux
Studieanvisning till Matematik 3000 kurs C/Komvu ISBN 91-27-51027-1 Förord Vår ambition med denna studiehandledning är att den skall guida dig genom boken Matematik 3000 kurs C/Komvu av Lars-Eric Björk,
Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011
Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30. Vid sekretessbedömning
Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs
Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Klippa gräset Jenny klipper gräsmattan hos Bo på 2 timmar. Måns gör det på 4 timmar. Förberedelser Utifrån en diskussion
Matematik i Gy11. 110912 Susanne Gennow
Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella
Inledning Kravgränser... 15
Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar Del II... 6 Bedömningsanvisningar uppgift 9 (Max 5/8)... 9
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Bedömningsanvisningar
Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3
freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan
vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn
KURSPROV Matematik C Höstterminen 2009 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t o m 2015-12-31.
Matematik. Programgruppens förslag till kursplan för Matematik (10) Dnr 2004:3064
Styrmedel/Styrdokument Programgruppen NV 2005-12-20 1 (10) Matematik Utbildningen i ämnet Matematik bygger vidare på kunskaper motsvarande grundskolans och innebär såväl breddning som fördjupning av ämnet.
Inledning Kravgränser Provsammanställning... 18
NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001 BEDÖMNINGSANVISNINGAR Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar
Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande:
Matematik Skolverkets förslag, redovisat för regeringen 2010-09-23. Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt999 för Ma4 (7) Innehåll Förord Kursprov i matematik, kurs E vt999 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att vara tdlig och
Np MaA vt Innehåll
Innehåll Bedömningsanvisningar Tidsbunden del... 3 Allmänna bedömningsanvisningar... 3 Positiv bedömning... 3 Uppgifter där endast svar fordras... 3 Uppgifter där fullständig redovisning fordras... 3 Bedömning
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Faktiska förkunskapskrav för vissa behörigheter
Malmö högskola / Gemensamt verksamhetsstöd Studentcentrum 1(5) Mars 2016 Faktiska förkunskapskrav för vissa behörigheter Ersättning för behörighetskursen Engelska B En del utbildningar anger Engelska B
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
NpMaC ht Anvisningar. Miniräknare och Formler till nationellt prov i matematik kurs C, D och E.
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar Provtid
Matematik. Ämnets syfte
Matematik MAT Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som
Undervisningsplanering i Matematik Kurs E (Poäng 50)
Undervisningsplanering i Matematik Kurs E (Poäng 50) Kurskod: MA1205 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009
Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder
NpMa3c Muntligt delprov Del A ht 2012
Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater
Andelar och procent Fractions and Percentage
Sida 1 av 20 Kursplan Uttagen: Inrättad: 2010-09-03 Andelar och procent Fractions and Percentage Högskolepoäng: 1.0 Kurskod: 5MA098 Ansvarig enhet: Matematik och Matematisk statistik SCB-ämne: Matematik
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).
Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på
Matematik. Ämnets syfte. Kurser i ämnet. Matematik
en har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation med hjälp
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Rättelseblad till M 2b
Rättelseblad till M 2b 47-08592-7 Trckfel (första eller andra trckningen) Sida Var Står Skall stå 5 Rad nerifrån Ekvationen 209 Ekvationen 2 = 3 209 65 Uppg 269...tillsamman tillsammans 44 Eempel 2 2 2
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Ma3bc. Komvux, Lund. Prov kap
Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du
Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Nationellt kursprov i MATEMATIK
4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000
2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng
Individuella val Årskurs 3. Läsåret 2017/2018
Individuella val Årskurs 3 Läsåret 2017/2018 1 Innehållsförteckning Anvisningar... 2 Bild och form 1b: 100 poäng... 4 Engelska 6: 100 poäng... 4 Engelska 7: 100 poäng... 4 Fotografisk bild 1: 100 poäng...
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
NpMab ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet
Matematik 3c Kap 2 Förändringshastighet och derivator
Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN
freeleaks NpMaD vt001 för Ma4 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 001 Förord Utformningen av de nationella proven i matematik har varierat över tid. Uppgifter till den äldre
Studiehandledning. kurs Matematik 1b
Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Inledning Kravgränser Provsammanställning... 21
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2001 BEDÖMNINGSANVISNINGAR Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar
Välj två värden på volymen x och avläs i figuren motsvarande värden på vattenytans höjd h. Beräkna ändringskvoten för de avlästa värdena.
Vid bedömning av ditt arbete med uppgift nummer 15 kommer läraren att ta hänsyn till: Hur väl du argumenterar för dina slutsatser Hur väl du använder matematiska ord och symboler Hur väl du genomför dina
Exponentialfunktioner och logaritmer
Eponentialfunktioner och logaritmer Tidigare i kurserna har du gått igenom potenslagarna, hur man räknar med potenser och potensfunktioner av typen y. En potens- funktion är en funktion som innefattar
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 30 juni 2013. Anvisningar NATIONELLT
Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in.
NpMa3c ht 2012 Del B Del C Provtid Hjälpmedel Kravgränser Endast svar krävs Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in. NpMa3c ht 2012 Del B:Endast svar krävs 1. x x
Matematik. Ämnets syfte
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
NpMa2b Muntlig del vt 2012
Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater
6. Samband mellan derivata och monotonitet
34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för
Ekvationer & Funktioner Ekvationer
Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
Delkursplanering MA Matematik A - 100p
Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
ALGEBRA OCH FUNKTIONER
ALGEBRA OCH FUNKTIONER Centralt innehåll Hantering av algebraiska uttrck och ekvationer. Generalisering av aritmetikens lagar. Begreppen polnom och rationellt uttrck. Kontinuerlig och diskret funktion.
Katrinelundsgymnasiet KATRINELUNDSGYMNASIET KURSKATALOG 11/12
KATRINELUNDSGYMNASIET KURSKATALOG 11/12 Innehållsförteckning Språkkurser 1 Svenska 3 Idrottskurser 4 Estetiska kurser 6 Ekonomiska kurser 7 Övriga kurser 8 Språkkurser Moderna språk Franska steg 1-5 Italienska
3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition
3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.
17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.
Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6
freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast
Matematik 1B. Taluppfattning, aritmetik och algebra
Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 2012. Anvisningar NATIONELLT