PRÖVNINGSANVISNINGAR
|
|
- Berit Lundström
- för 8 år sedan
- Visningar:
Transkript
1 PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex. Matematik 4000 kurs D; Alfredson, Erixon, Heikne, Palbom, (Natur och kultur) Skriftligt prov på 4 timmar Vid behov Ett eget arbete som ska redovisas. Tag kontakt med examinator om du har frågor. Examinatorn kontaktar dig efter rättningen av det skriftliga provet. Formelsamling utdelas vid provtillfället. Denna kan hämtas hem från: Gamla kursprov kan hämtas från: Bifogas Kursmål och betygskriterier
2 Kursbeskrivning Matematik D, 100 poäng Kurskod MA104 Mål Efter genomgången kurs skall den studerande kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning med fördjupad kunskap om sådana begrepp och metoder som ingår i tidigare kurser kunna använda enhetscirkeln för att definiera trigonometriska begrepp, visa trigonometriska samband och ge fullständiga lösningar till enkla trigonometriska ekvationer samt kunna utnyttja dessa vid problemlösning kunna rita grafer till trigonometriska funktioner samt använda dessa funktioner som modeller för verkliga periodiska förlopp kunna härleda och använda de formler som behövs för att omforma enkla trigonometriska uttryck och lösa trigonometriska ekvationer kunna beräkna sidor och vinklar i en godtycklig triangel kunna förklara deriveringsreglerna och själv i några fall kunna härleda dem för trigonometriska funktioner, logaritmfunktioner, sammansatta funktioner, produkt och kvot av funktioner samt kunna tillämpa dessa regler vid problemlösning kunna använda andraderivatan i olika tillämpade sammanhang kunna förklara och använda tankegången bakom någon metod för numerisk ekvationslösning samt vid problemlösning kunna använda grafisk, numerisk eller symbolhanterande programvara kunna förklara innebörden av begreppet differentialekvation och kunna ge exempel på några enkla differentialekvationer och redovisa problemsituationer där de kan uppstå kunna bestämma primitiva funktioner och använda dessa vid tillämpad problemlösning kunna förklara innebörden av begreppet integral och klargöra sambandet mellan integral och derivata samt kunna ställa upp, tolka och använda integraler i olika typer av grundläggande tillämpningar kunna redogöra för tankegången bakom och kunna använda någon metod för numerisk integration samt vid problemlösning kunna använda grafisk, numerisk eller symbolhanterande programvara för att beräkna integraler under eget ansvar analysera, genomföra och redovisa, muntligt och skriftligt, en något mer omfattande uppgift där kunskaper från olika områden av matematiken används.
3 Betygskriterier Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt för att formulera och lösa problem i ett steg. Eleven genomför matematiska resonemang såväl muntligt som skriftligt. Eleven använder matematiska termer, symboler och konventioner samt utför beräkningar på ett sådant sätt att det är möjligt att följa, förstå och pröva de tankar som kommer till uttryck. Eleven skiljer gissningar och antaganden från givna fakta och härledningar eller bevis. Kriterier för betyget Väl godkänd Eleven använder lämpliga matematiska begrepp, metoder, modeller och tillvägagångssätt för att formulera och lösa olika typer av problem. Eleven deltar i och genomför matematiska resonemang såväl muntligt som skriftligt. Eleven gör matematiska tolkningar av situationer eller händelser samt genomför och redovisar sitt arbete med logiska resonemang såväl muntligt som skriftligt. Eleven använder matematiska termer, symboler och konventioner på sådant sätt att det är lätt att följa, förstå och pröva de tankar som kommer till uttryck såväl muntligt som skriftligt. Eleven visar säkerhet beträffande beräkningar och lösning av olika typer av problem och använder sina kunskaper från olika delområden av matematiken. Eleven ger exempel på hur matematiken utvecklats och använts genom historien och vilken betydelse den har i vår tid inom några olika områden. Kriterier för betyget Mycket väl godkänd Eleven formulerar och utvecklar problem, väljer generella metoder och modeller vid problemlösning samt redovisar en klar tankegång med korrekt matematiskt språk. Eleven analyserar och tolkar resultat från olika typer av matematisk problemlösning och matematiska resonemang. Eleven deltar i matematiska samtal och genomför såväl muntligt som skriftligt matematiska bevis. Eleven värderar och jämför olika metoder, drar slutsatser från olika typer av matematiska problem och lösningar samt bedömer slutsatsernas rimlighet och giltighet. Eleven redogör för något av det inflytande matematiken har och har haft för utvecklingen av vårt arbets- och samhällsliv samt för vår kultur. Skolverket Se vidare nästa sida; den lokala beskrivningen
4 Lokala betygskriterier för Matematik D, 100 poäng Kurskod MA104 Innehåll 1. Trigonometri. Deriveringsregler och differentialekvationer 3. Integraler Allmänna mål för Matematik D enligt skolverkets kursplan kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning med fördjupad kunskap om sådana begrepp och metoder som ingår i tidigare kurser. under eget ansvar analysera, genomföra och redovisa, muntligt och skriftligt, en något mer omfattande uppgift där kunskaper från olika områden av matematiken används. Mål för specifika delar av Matematik D 1 Trigonometri enligt skolverkets kursplan kunna använda enhetscirkeln för att definiera trigonometriska begrepp, visa trigonometriska samband och ge fullständiga lösningar till enkla trigonometriska ekvationer samt kunna utnyttja dessa vid problemlösning. kunna rita grafer till trigonometriska funktioner samt använda dessa funktioner som modeller för verkliga periodiska förlopp. kunna härleda och använda de formler som behövs för att omforma enkla trigonometriska uttryck och lösa trigonometriska ekvationer. kunna beräkna sidor och vinklar i en godtycklig triangel. Godkänd Väl godkänd kunna använda formlerna för sin x, cos kunna härleda formeln för x, trigonometriska ettan samt trigonometriska ettan utifrån additionsformlerna. enhetscirkeln. kunna omvandla vinklar i en enhet till en kunna utföra bevis genom att använda de annan, grader/radianer. trigonometriska formlerna. kunna använda sinussatsen, cosinussatsen och areasatsen. π 1. Rita y = sin (x + ) π 1. Lös ekv. cos x = 4 3. Visa att (cos x + sin x) = 1 + sin x. Lös ekv. sin v = Lös ekv. cos(x + 60 ) = 0,5 3. Lös ekv. cos x sin x = 0,5
5 Mycket väl godkänd kunna utföra mer omfattande bevis. kunna lösa uppgifter av mer omfattande och generell karaktär. kunna redovisa lösningar på ett tydligt och matematiskt korrekt sätt. Exempel på uppgift som skall kunna lösas: Undersök hur antalet lösningar till ekvationen a sin kx + b = 0 (0 x 360 ) varierar med valet av konstanterna a, b och k om a > 0 och b>0, då k är ett heltal. Om k inte är ett heltal, vad är det lägsta k-värde som ger en lösning överhuvudtaget om a > 0 och b>0? Facit: a > b k st lösningar a = b k st lösningar a < b inga lösningar Deriveringsregler och differentialekvationer enligt skolverkets kursplan kunna använda andraderivatan i olika tillämpade sammanhang. kunna förklara tankegången bakom någon metod för numerisk ekvationslösning. Vid problemlösning kunna använda grafisk, numerisk metod eller symbolhanterande programvara. kunna förklara innebörden av begreppet differentialekvation och kunna ge exempel på några enkla differentialekvationer och redovisa problemsituationer där de kan uppstå. Godkänd kunna välja och tillämpa aktuell deriveringsregel vid problemlösning. kunna tillämpa deriveringsreglerna för trigonometriska funktioner, logaritmfunktioner, sammansatta funktioner, produkt och kvot av funktioner vid problemlösning. x 1. Derivera y = e + 0,5 ln x x. Visa att y = e 3 är en lösning till differentialekvationen y + 3 y = 0 3. Visa med hjälp av derivata att x 3x y = har den lokala x + 1 minimipunkten (1,-1) Väl godkänd kunna förklara deriveringsreglerna och själv i några fall kunna härleda dem. derivera mer komplicerade funktioner själv kunna ställa upp och tolka uttryck som beskriver förändringen av ett verkligt förlopp. 1. Bestäm exakt f (1) om f ( x) = x x + 3x + 5 e. Bestäm konstanterna k och m så att 3x y = kx + m + e är en lösning till differentialekvationen y 3 y = 6x Man skall tillverka en oljecistern i form av en rät cirkulär cylinder med horisontell
6 4. Lös ekvationen: 0,3x + sin x = 0 med hjälp av Newton-Raphsons metod. Svara med 3 decimaler. bottenyta. Summan av radien och höjden skall vara 1,0 m och volymen 745 m 3. Bestäm höjden så att cisternen blir så låg som möjligt. Mycket väl godkänt kunna utföra mer omfattande bevis. kunna kombinera kunskaper från olika områden för att lösa uppgifter av mer sammansatt natur. Exempel på uppgift som skall kunna lösas: Kurvan y = ax + x + 1 är en parabel som har minimipunkt för a>0. För olika värden på a får minimipunkten olika koordinater. Visa att samtliga minimipunkter ligger på den räta linjen y = x+1. 3 Integraler enligt skolverkets kursplan kunna förklara innebörden av begreppet integral och klargöra sambandet mellan integral och derivata samt kunna ställa upp, tolka och använda integraler i olika typer av grundläggande tillämpningar. kunna bestämma primitiva funktioner och använda dessa vid tillämpad problemlösning. kunna redogöra för tankegången bakom och kunna använda någon metod för numerisk integration samt vid problemlösning kunna använda grafisk, numerisk eller symbolhanterande programvara för att beräkna integraler.
7 Godkänd kunna beräkna integraler med hjälp av b formeln: f ( x) dx = F( b) F( a) a kunna ställa upp och använda integraler i olika typer av tillämpade sammanhang. 1. För ett föremål vid tidpunkten t s ges accelerationen av a( t) =,0 0, 8 t, för 0 t 6. Hur stor är föremålets fart efter 6,0 s om begynnelsefarten är 0 m/s?. Bestäm samtliga primitiva funktioner F( x) till f ( x) = x 1 10 x. 3. I figuren är kurvan y = x ritad. Teckna med hjälp av integral ett uttryck för arean av det streckade området. Väl godkänd kunna förklara och härleda formeln för integraler. förstå och tillämpa räknereglerna för integraler. beräkna integraler av mer komplicerade uttryck. x 1. Kurvan y = e, linjen x = a och de positiva koordinataxlarna innesluter ett område som är 10 a.e. Bestäm konstanten a exakt.. I figuren nedan är den primitiva funktionen y = F( x) till y = f ( x) ritad. a) Beräkna med hjälp av figuren 1 0 f ( x) dx + f ( x) dx. 1 b) Beräkna också f ( x) dx. Vilken slutats kan du dra om du jämför svaren? 0
8 Mycket väl godkänd kunna bevisa räknereglerna för integraler. ställa upp och tolka integraler av mer omfattande och generell natur. kunna redovisa lösningar på ett tydligt och matematiskt korrekt sätt. integrera uttryck som innehåller mer än en variabel. Exempel på uppgift som skall kunna lösas: En stenkula släpps en bit ovanför en vattenyta. Grafen nedan visar hur stenens hastighet v m/s varierar med tiden t sekunder från det ögonblick då den släpps. a) Beskriv vad som händer med stenkulan i A, B, C och D. b) Hur högt ovanför vattenytan släpptes stenen? 3t Stenkulans hastighet v ( t) m/s i vattnet kan beskrivas med funktionen v( t) = 1+ 18e. Bestäm vattendjupet där stenkulan släpps. Ge svaret i meter med två decimaler. v m/s 5 A 4 3 B 1 C D t s Dessutom tillkommer i kurs D: under eget ansvar analysera, genomföra och redovisa, muntligt eller skriftligt en något mer omfattande uppgift där kunskaper från olika områden av matematiken används.
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor
Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt
PRÖVNINGSANVISNINGAR
Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.
Ämne - Matematik (Gymnasieskola före ht 2011)
Ämne - Matematik Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
Matematik C (MA1203)
Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar NATIONELLT
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 30 juni 2013. Anvisningar NATIONELLT
Likvärdig bedömning i matematik med stöd av nationella prov
1 (50) Likvärdig bedömning i matematik med stöd av nationella prov Matematik kurs D, MA1204, 100 poäng Sammanfattning Detta material är framtaget av Timo Hellström och Peter Nyström på Institutionen för
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 2012. Anvisningar NATIONELLT
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2011
Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30. Vid sekretessbedömning
Planering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.
NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 31 december 013. Anvisningar NATIONELLT
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 2002. Anvisningar NATIONELLT
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
Matematik E (MA1205)
Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2001
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 2011. Anvisningar NATIONELLT
1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen
Olika styrdokument har olika dignitet 1. Skollagen 2. Läroplanen Lpo 94 / Lpf 94 3. Grundskole- / Gymnasieförordningen Riksdagen Regeringen Utskott SOU Departement (utbildnings-) Statliga verk (Skolverket)
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE vt2000 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E vt 2000 2 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 005. Anvisningar NATIONELLT
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN
freeleaks NpMaD vt001 för Ma4 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 001 Förord Utformningen av de nationella proven i matematik har varierat över tid. Uppgifter till den äldre
MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.
MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 8
freeleaks NpMaD vt1997 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1997 2 Del I, 13 uppgifter med miniräknare 3 Del II, breddningsdel 8 Förord Kom ihåg Matematik är att
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).
Bedömingsanvisningar Del II vt 2010
Bedömingsanvisningar Del II vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Bedömningsanvisningar Del II... 4 Kravgränser... 16 Maxpoäng...
SKOLFS 2006:xx Skolverkets föreskrifter om kursplaner och betygskriterier i ämnet Matematik i gymnasieskolan den xx xxxxxx 2006
SKOLFS 2006:xx Skolverkets föreskrifter GY07:143 om kursplaner och betygskriterier i ämnet Utkom från trycket Matematik i gymnasieskolan den xx xxxxxx 2006 2006-08-21 Skolverket meddelar med stöd av 1
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar
NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från
Ekvationer & Funktioner Ekvationer
Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10
JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3
freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte
Matematik i Gy11. 110912 Susanne Gennow
Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella
G VG MVG Programspecifika mål och kriterier
Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203
Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
Inledning...3. Kravgränser...21. Provsammanställning...22
Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21
Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht999 för Ma4 (7) Innehåll Förord Kursprov i matematik, kurs E ht999 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005
KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd
för Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
SF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden
KTH Matematik 1 SF162 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden 23-26 27-8-31 1 Geometri med trigonometri Övning 1.1 Rita upp triangeln ABC med A = (1,
I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.
17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 7
freeleaks NpMaD vt1999 för Ma4 1(9) Innehåll Förrd 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1999 Del I, 13 uppgifter med miniräknare 3 Del II, breddningsdel 7 Förrd Km ihåg Matematik är att vara
Undervisningsplanering i Matematik Kurs E (Poäng 50)
Undervisningsplanering i Matematik Kurs E (Poäng 50) Kurskod: MA1205 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN
freeleaks NpMaB vt000 1() Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 000 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B hör
NpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt999 för Ma4 (7) Innehåll Förord Kursprov i matematik, kurs E vt999 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att vara tdlig och
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att
Bedömningsanvisningar
Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
NpMa3c ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser
PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN
Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter
Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
Matematik B (MA1202)
Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
för Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 010-03-9 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 9.00-13.00 Hjälpmedel:
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a, b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Planering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs
Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Klippa gräset Jenny klipper gräsmattan hos Bo på 2 timmar. Måns gör det på 4 timmar. Förberedelser Utifrån en diskussion
Planering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av mars 1997. NATIONELLT PROV
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.
Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av april 999. NATIONELLT KURSPROV
7. Ange och förklara definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = ln(x) 1.
MMA11 Matematisk grundkurs TEN Datum: 1 januari 01 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera
Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000
2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.
MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
(5 + 4x)(5 2y) = (2x y) 2 + (x 2y) ,
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-06-01
NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5
freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast