Kursplan för Matematik
|
|
- Sten Gunnarsson
- för 9 år sedan
- Visningar:
Transkript
1 Sida 1 av 5 Kursplan för Matematik Inrättad SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för att fatta välgrundade beslut i vardagslivets många valsituationer, för att kunna tolka och använda det ökande flödet av information och för att kunna följa och delta i beslutsprocesser i samhället. Utbildningen skall ge en god grund för studier i andra ämnen, fortsatt utbildning och ett livslångt lärande. Matematiken är en viktig del av vår kultur och utbildningen skall ge eleven insikt i ämnets historiska utveckling, betydelse och roll i vårt samhälle. Utbildningen syftar till att utveckla elevens intresse för matematik och möjligheter att kommunicera med matematikens språk och uttrycksformer. Den skall också ge eleven möjlighet att upptäcka estetiska värden i matematiska mönster, former och samband samt att uppleva den tillfredsställelse och glädje som ligger i att kunna förstå och lösa problem. Utbildningen i matematik skall ge eleven möjlighet att utöva och kommunicera matematik i meningsfulla och relevanta situationer i ett aktivt och öppet sökande efter förståelse, nya insikter och lösningar på olika problem. Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och att använda matematik i olika situationer, inser att matematiken har spelat och spelar en viktig roll i olika kulturer och verksamheter och får kännedom om historiska sammanhang där viktiga begrepp och metoder inom matematiken utvecklats och använts, inser värdet av och använder matematikens uttrycksformer, utvecklar sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande, utvecklar sin förmåga att formulera, gestalta och lösa problem med hjälp av matematik, samt tolka, jämföra och värdera lösningarna i förhållande till den ursprungliga problemsituationen, utvecklar sin förmåga att använda enkla matematiska modeller samt kritiskt granska modellernas förutsättningar, begränsningar och användning, utvecklar sin förmåga att utnyttja miniräknarens och datorns möjligheter. Strävan skall också vara att eleven utvecklar sin tal- och rumsuppfattning samt sin förmåga att förstå och använda grundläggande talbegrepp och räkning med reella tal, närmevärden, proportionalitet
2 Sida 2 av 5 och procent, olika metoder, måttsystem och mätinstrument för att jämföra, uppskatta och bestämma storleken av viktiga storheter, grundläggande geometriska begrepp, egenskaper, relationer och satser, grundläggande statistiska begrepp och metoder för att samla in och hantera data och för att beskriva och jämföra viktiga egenskaper hos statistisk information, grundläggande algebraiska begrepp, uttryck, formler, ekvationer och olikheter, egenskaper hos några olika funktioner och motsvarande grafer, sannolikhetstänkande i konkreta slumpsituationer. Ämnets karaktär och uppbyggnad Matematik är en levande mänsklig konstruktion som omfattar skapande, utforskande verksamhet och intuition. Matematik är också en av våra allra äldsta vetenskaper och har i stor utsträckning inspirerats av naturvetenskaperna. Matematikämnet utgår från begreppen tal och rum och studerar begrepp med väldefinierade egenskaper. All matematik innehåller någon form av abstraktion. Likheter mellan olika företeelser observeras och dessa beskrivs med matematiska objekt. Redan ett naturligt tal är en sådan abstraktion. Tillämpningar av matematik i vardagsliv, samhällsliv och vetenskaplig verksamhet ger formuleringar av problem i matematiska modeller. Dessa studeras med matematiska metoder. Resultatens värde beror på hur väl modellen beskriver problemet. Kraftfulla datorer har gjort det möjligt att tillämpa allt mer precisa modeller och metoder inom områden där de tidigare inte varit praktiskt användbara. Detta har också lett till utveckling av nya kunskapsområden i matematik som i sin tur lett till nya tillämpningar. Problemlösning har alltid haft en central plats i matematikämnet. Många problem kan lösas i direkt anslutning till konkreta situationer utan att man behöver använda matematikens uttrycksformer. Andra problem behöver lyftas ut från sitt sammanhang, ges en matematisk tolkning och lösas med hjälp av matematiska begrepp och metoder. Resultaten skall sedan tolkas och värderas i förhållande till det ursprungliga sammanhanget. Problem kan också vara relaterade till matematik som saknar direkt samband med den konkreta verkligheten. För att framgångsrikt kunna utöva matematik krävs en balans mellan kreativa, problemlösande aktiviteter och kunskaper om matematikens begrepp, metoder och uttrycksformer. Detta gäller alla elever, såväl de som är i behov av särskilt stöd som elever i behov av särskilda utmaningar. Matematik har nära samband med andra skolämnen. Eleverna hämtar erfarenheter från omvärlden och får därmed underlag för att vidga sitt matematiska kunnande. Mål som eleverna lägst ska ha uppnått i slutet av det tredje Målen uttrycker en lägsta godtagbar kunskapsnivå. Skolan och skolhuvudmannen ansvarar för att eleverna ges möjlighet att uppnå denna. De flesta elever kan och ska komma längre i sin kunskapsutveckling än vad denna nivå anger. Eleven ska ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna tolka elevnära information med matematiskt innehåll, kunna uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk, grundläggande matematiska begrepp och symboler, tabeller och bilder, samt
3 Sida 3 av 5 kunna undersöka elevnära matematiska problem, pröva och välja lösningsmetoder och räknesätt samt uppskatta och reflektera över lösningar och deras rimlighet. Inom denna ram ska eleven beträffande tal och talens beteckningar - kunna läsa och skriva tal samt ange siffrors värde i talen inom heltalsområdet , - kunna jämföra, storleksordna och dela upp tal inom heltalsområdet , - kunna dela upp helheter i olika antal delar samt kunna beskriva, jämföra och namnge delarna som enkla bråk, - kunna beskriva mönster i enkla talföljder, och - kunna hantera matematiska likheter inom heltalsområdet 0-20, beträffande räkning med positiva heltal - kunna förklara vad de olika räknesätten står för och deras samband med varandra med hjälp av till exempel konkret material eller bilder, - kunna räkna i huvudet med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20 samt med enkla tal inom ett utvidgat talområde, och - kunna addera och subtrahera tal med hjälp av skriftliga räknemetoder när talen och svaren ligger inom talområdet 0-200, beträffande rumsuppfattning och geometri - kunna beskriva föremåls och objekts placering med hjälp av vanliga och enkla lägesbestämningar, - kunna beskriva, jämföra och namnge vanliga två- och tredimensionella geometriska objekt, - kunna rita och avbilda enkla tvådimensionella figurer samt utifrån instruktion bygga enkla tredimensionella figurer, och - kunna fortsätta och konstruera enkla geometriska mönster, beträffande mätning - kunna göra enkla jämförelser av olika längder, areor, massor, volymer och tider, och - kunna uppskatta och mäta längder, massor, volymer och tid med vanliga måttenheter, beträffande statistik - kunna tolka och presentera enkel och elevnära information i tabeller och diagram. Mål som eleverna skall ha uppnått i slutet av det femte Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer och lösa konkreta problem i elevens närmiljö. Inom denna ram skall eleven ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i bråk- och decimalform, förstå och kunna använda addition, subtraktion, multiplikation och division samt kunna upptäcka talmönster och bestämma obekanta tal i enkla formler, kunna räkna med naturliga tal i huvudet, med hjälp av skriftliga räknemetoder och med miniräknare, ha en grundläggande rumsuppfattning och kunna känna igen och beskriva några viktiga egenskaper hos geometriska figurer och mönster,
4 Sida 4 av 5 kunna jämföra, uppskatta och mäta längder, areor, volymer, vinklar, massor och tider samt kunna använda ritningar och kartor, kunna avläsa och tolka data givna i tabeller och diagram samt kunna använda elementära lägesmått. Mål som eleverna skall ha uppnått i slutet av det nionde Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa problem som vanligen förekommer i hem och samhälle och som behövs som grund för fortsatt utbildning. Inom denna ram skall eleven ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform, ha goda färdigheter i och kunna använda överslagsräkning och räkning med naturliga tal och tal i decimalform samt procent och proportionalitet i huvudet, med hjälp av skriftliga räknemetoder och med tekniska hjälpmedel, kunna använda metoder, måttsystem och mätinstrument för att jämföra, uppskatta och bestämma längder, areor, volymer, vinklar, massor, tidpunkter och tidsskillnader, kunna avbilda och beskriva viktiga egenskaper hos vanliga geometriska objekt samt kunna tolka och använda ritningar och kartor, kunna tolka, sammanställa, analysera och värdera data i tabeller och diagram, kunna använda begreppet sannolikhet i enkla slumpsituationer, kunna tolka och använda enkla formler, lösa enkla ekvationer, samt kunna tolka och använda grafer till funktioner som beskriver verkliga förhållanden och händelser. Bedömning i ämnet matematik Bedömningens inriktning Bedömningen av elevens kunnande i ämnet matematik gäller följande kvaliteter: Förmågan att använda, utveckla och uttrycka kunskaper i matematik Bedömningen avser elevens förmåga att använda och utveckla sitt matematiska kunnande för att tolka och hantera olika slag av uppgifter och situationer som förekommer i skola och samhälle, till exempel förmågan att upptäcka mönster och samband, föreslå lösningar, göra överslag, reflektera över och tolka sina resultat samt bedöma deras rimlighet. Självständighet och kreativitet är viktiga bedömningsgrunder liksom klarhet, noggrannhet och färdighet. En viktig aspekt av kunnandet är elevens förmåga att uttrycka sina tankar muntligt och skriftligt med hjälp av det matematiska symbolspråket och med stöd av konkret material och bilder. Förmågan att följa, förstå och pröva matematiska resonemang Bedömningen avser elevens förmåga att ta del av och använda information i såväl muntlig som skriftlig form, till exempel förmågan att lyssna till, följa och pröva andras förklaringar och argument. Vidare uppmärksammas elevens förmåga att självständigt och kritiskt ta ställning till matematiskt grundade beskrivningar och lösningar på problem som förekommer i olika sammanhang i skola och samhälle.
5 Sida 5 av 5 Förmågan att reflektera över matematikens betydelse för kultur- och samhällsliv Bedömningen avser elevens insikter i och känsla för matematikens värde och begränsningar som verktyg och hjälpmedel i andra skolämnen, i vardagsliv och samhällsliv och vid kommunikation mellan människor. Den avser också elevens kunskaper om matematikens betydelse i ett historiskt perspektiv. Kriterier för betyget Väl godkänt Eleven använder matematiska begrepp och metoder för att formulera och lösa problem. Eleven följer och förstår matematiska resonemang. Eleven gör matematiska tolkningar av vardagliga händelser eller situationer samt genomför och redovisar med logiska resonemang sitt arbete såväl muntligt som skriftligt. Eleven använder ord, bilder och matematiska konventioner på ett sådant sätt att det är möjligt att följa, förstå och pröva de tankar som kommer till uttryck. Eleven visar säkerhet i sitt problemlösningsarbete och använder olika metoder och tillvägagångssätt. Eleven kan skilja gissningar och antaganden från det vi vet eller har möjlighet att kontrollera. Eleven ger exempel på hur matematiken utvecklats och använts genom historien och vilken betydelse den har i vår tid inom några olika områden. Kriterier för betyget Mycket väl godkänt Eleven formulerar och löser olika typer av problem samt jämför och värderar olika metoders för- och nackdelar. Eleven visar säkerhet i sina beräkningar och sitt problemlösningsarbete samt väljer och anpassar räknemetoder och hjälpmedel till den aktuella problemsituationen. Eleven utvecklar problemställningar och använder generella strategier vid uppgifternas planering och genomförande samt analyserar och redovisar strukturerat med korrekt matematiskt språk. Eleven tar del av andras argument och framför utifrån dessa egna matematiskt grundade idéer. Eleven reflekterar över matematikens betydelse för kultur- och samhällsliv. Skolverket Stockholm Besöksadress: Alströmergatan 12 och Fleminggatan 20 Telefon: Fax: E-post: skolverket@skolverket.se
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Betygskriterier i matematik på Parkskolan Namn: Klass:
Betygskriterier i matematik på Parkskolan Namn: Klass: Taluppfattning Utvecklar sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. Ha goda färdigheter i och kunna
Kursplan med kommentarer till mål som eleverna lägst ska ha uppnått i slutet av det tredje skolåret
Kursplan med kommentarer till mål som eleverna lägst ska ha uppnått i slutet av det tredje skolåret Matematik Svenska / Svenska som andraspråk 123 Konferensupplaga oktober 2008 123 Form: Ordförrådet AB
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN
NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå.
Läroplanens mål Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Mål att sträva mot är det som styr planeringen av undervisningen och gäller för alla årskurser.
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder
Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen
MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Kursplanernas uppnåendemål för år 3 (svenska, svenska som andraspråk och matematik) samt. uppnåendemål för år 5 i alla ämnen.
Kursplanernas uppnåendemål för år 3 (svenska, svenska som andraspråk och matematik) samt uppnåendemål för år 5 i alla ämnen (ur LPO 94) Mål att uppnå anger den miniminivå av kunskaper som alla elever skall
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Kommunövergripande Mål i matematik, åk 1-9
Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Tränar sig att se, upptäcka, lägga och kategorisera mönster med hjälp av ex. lego, pärlor, pussel och klossar.
Algebra utvecklar sin tal- och rumsuppfattning samt sin förmåga att förstå och använda grundläggande algebraiska begrepp, uttryck, formler, ekvationer och olikheter. Förskoleklass År 2 År 3 År 4 Tränar
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Ny kursplan i matematik
Ny kursplan i matematik Läroplanskommitténs förslag till ny kursplan i matematik för grundskolan presenteras på följande sidor. Bengt Johansson och Göran Emanuelsson, som tagit fram underlag till förslaget,
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Matematikutvecklingsschema
Bakgrundsmaterial till Matematikutvecklingsschema Simrishamns kommun För grundskolan och kursen matematik A på gymnasieskolan. (2006 09 27) - 1 - Matematikutvecklingsschema F 9 samt Ma A i gymnasieskolan
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Matematik Uppnående mål för år 6
Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Kursplanen i ämnet matematik
DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet matematik Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
Individuell utvecklingsplan med skriftliga omdömen år 1-3
Individuell utvecklingsplan med skriftliga omdömen år 1-3 Enligt de kursplaner som styr undervisningen i olika ämnen, finns nationella mål uppställda vad eleven ska ha uppnått kunskaper i skolår fem. I
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå
Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande:
Matematik Skolverkets förslag, redovisat för regeringen 2010-09-23. Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans
måndag, 2010 oktober 11
Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik? Vad är matematik? Nationalencyklopedin En abstrakt och generell
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
30-40 år år år. > 60 år år år. > 15 år
1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen
Olika styrdokument har olika dignitet 1. Skollagen 2. Läroplanen Lpo 94 / Lpf 94 3. Grundskole- / Gymnasieförordningen Riksdagen Regeringen Utskott SOU Departement (utbildnings-) Statliga verk (Skolverket)
Lokal planering i matematik
2007-05-16 Lokal planering i matematik gemensam för Ölmbrotorps skola, Ervalla skola, Hovstaskolan, Lillåns södra skola, Lillåns norra skola och Lillåns skola 7-9 2007-05-16 1 Bakgrund Detta är ett dokument
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik?
Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik? Vad är matematik? Nationalencyklopedin En abstrakt och generell
Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72
Sedan vårterminen 2009 görs nationella prov i svenska och matte för årskurs 3 i hela landet. Från och med höstterminen 2009 får varje elev i Valdemarsviks kommun skriftligt omdöme varje termin i de ämnen
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för