SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
|
|
- Peter Lind
- för 8 år sedan
- Visningar:
Transkript
1 SF64 Algebra och geometri Lösningsförslag till tentamen DEL A De tre totalmatriserna , och svarar mot linjära ekvationssystem i fem obekanta x, x, x 3, x 4, x 5. a En av matriserna är på reducerad trappstegsform. Vilken? b Välj någon av matriserna och använd denna för att bestämma lösningsmängden till motsvarande ekvationssystem. c Avgör om någon av de andra två matriserna svarar mot ett linjärt ekvationssystem med samma lösningsmängd. Lösning. a Det är den mittersta matrisen som är på reducerad trappstegsform. Alla tre är på trappstegsform med ledande ettor i första, andra och fjärde kolonnen, men den första och den tredje är inte eliminerade ovanför den ledande ettan i fjärde kolonnen. b I och med att den mittersta matrisen är på reducerad trappstegsform är det lättast att använda den. Vi inför en parameter för de båda fria variablerna som svarar mot kolonnerna utan ledande etta. Vi får x 3 s och x 5 t. Därefter kan vi använda de tre ekvationerna för att lösa ut de bundna variablerna och får x 4 3x 3 4x 5 4 3s 3t, x 3x 3 3x 5 3s 3t, x 4 x 5 t Därmed ges lösningsmängden av x, x, x 3, x 4, x 5 4 3s 4t, 3s 3t, s, t, t där s och t är reella parametrar. eng. reduced row-echelon form
2 SF64 Algebra och geometri - Lösningsförslag till tentamen c VI kan fortsätta eliminera den första och den tredje matrisen till reducerad trappstegsform och får då r + r 3 r + r och r 3 r r 3 r + 3r r 3 I det första fallet får vi samma reducerade trappstegsform, och lösningsmängden är därmed lika med den från del b. I det andra fallet får vi en annan reducerad trappstegsform och lösningsmängden är därmed en annan. Svar: a Den mittersta är på reducerad trappstegsform. b Lösningsmängden ges av x, x, x 3, x 4, x 5 4 3s 4t, 3s 3t, s, t, t, är s och t är reella parametrar. c Den första matrisen svarar mot ett ekvationssystem med samma lösningsmängd, medan den tredje inte gör det.
3 SF64 Algebra och geometri - Lösningsförslag till tentamen Den linjära avbildningen T : R R 3 uppfyller att T, 3,, 4 och T,,, 3. a Bestäm standardmatrisen för avbildningen T. 3 b Bestäm en bas för bildrummet till T. Lösning. a För att bestämma standardmatrisen för T behöver vi beräkna värdena på standardbasvektorerna e, 0 och e 0,. Vi kan göra det genom att uttrycka standardbasvektorerna i de givna vektorerna u, och u 3,. Det går att se att, 0,, och 0,,,. Därmed får vi att och T, 0 T, T,,, 3 3,, 4,, T0, T, T, 3,, 4,, 3, 0,. Värdena på standardbasvektorerna utgör kolonnerna i standardmatrisen som därmed är A 0. Vi kan också lösa problemet genom att se att A uppfyller att A och vi får fram A som A , eng. range där vi beräknat inversen genom Gausselimination: [ ] r 0 r r 0 [ ] r + r r 0 0 b Eftersom, och, spänner upp domänen, R, kommer deras bilder att spänna upp bildrummet. Bilderna av dessa båda vektorer är inte parallella och därmed linjärt oberoende. Alltså bildar 3,, 4 och,, 3 en bas för bildrummet. Vi kan också se bildrummet som kolonnrummet för standardmatrisen och eftersom kolonnerna är linjärt oberoende utgör dessa en bas för kolonnrummet..
4 4 SF64 Algebra och geometri - Lösningsförslag till tentamen Svar: a Standardmatrisen för avbildningen är A 0. b En bas för bildrummet ges av exempelvis {3,, 4,,, 3}.
5 SF64 Algebra och geometri - Lösningsförslag till tentamen Vektorerna v,, 0 och w 0,, spänner upp ett plan W i R 3. a Bestäm en vektor u som är parallell med v, och som har längd. b Bestäm en vektor u så att {u,u } utgör en ortonormal bas för planet W. c När vi beräknar kryssprodukten u u får vi en normalvektor till W som redan är normerad, dvs som har längd. Varför? Lösning. a Vi har att u av där a är en konstant. Längden, eller normen, av u blir då a v a a. Alltså kan vi välja a som ±/ och får tex u /, /, 0. b Vi kan använda Gram-Schmidts metod för att bestämma den andra vektorn och får v w w u u u u 0,, 0,,,, 0 0,, +,, 0 0,, +,, 0,,,, 0 För att få en ortonormal bas förw behöver vi också normerav och får som i del a u v v,, / + / + 3/,, 6, 6, 6 Alltså utgör,, 0 och 6,, tillsammans en ortogonal bas för W. c När vi bildar kryssprodukten av de två vektorerna får vi en vektor som är ortogonal mot bägge och därmed ortogonal mot planet. Längden av vektorn ges av arean av parallellogrammen som spänns upp av u och u. Eftersom dessa utgör en ortogonal bas för planet spänner de upp en kvadrat med sidan, vars area också är areaenhet. Svar: a u /, /, 0 är parallell med v och har längd ett. b u / 6, / 6, / 6 utgör tillsammans med u en ortogonal bas för planet W.
6 6 SF64 Algebra och geometri - Lösningsförslag till tentamen DEL B 4 En linje y kx + m ska anpassas till punkterna,,,, 4, och 7, 6. a Bestäm de värden på konstanterna k och m som ger bäst anpassning i minstakvadratmening. 3 b Rita ut linjen tillsammans med punkterna i ett koordinatsystem och illustrera vad det är som har minimerats för dessa värden på konstanterna. Lösning. a Vi sätter in de fyra värdena i ekvationen kx + m y och får då ett överbestämt ekvationssystem k + m, k + m, 4k + m, 7k + m 6. För att hitta den lösning som är bäst i minsta-kvadratmening ser vi på när skillnaden mellan högerled och vänsterled är så liten som möjligt, vilket händer när denna vektor är ortogonal mot kolonnrummet till koefficientmatrisen. Vi leds därmed till normalevationen A T Ax A T b, dvs vilket är ekvivalent med k m k m Vi kan lösa detta ekvationssystem med hjälp av Gausselimination på totalmatrisen och får [ r ] 70 r r [ r r ] 8 7 r Alltså ges minsta kvadratlösningen av k / och m 3/, dvs linjen y x/ + 3/ passar bäst till punkterna. b Det är summan av kvadraterna av de vertikala avvikelserna som har minimerats för just denna linje, vilket i det här fallet är / / + 7/ 3,5. Svar: a k / och m 3/.
7 SF64 Algebra och geometri - Lösningsförslag till tentamen y x FIGUR. Linjen tillsammans med de fyra punkterna. b Summan av kvadraterna av avvikelserna, i detta fall är det minsta värdet 7/ 3,5.
8 8 SF64 Algebra och geometri - Lösningsförslag till tentamen a Förklara varför matrisen A a är ortogonalt diagonaliserbar precis bara om a 0. b Bestäm då a 0 en ortogonal matris P sådan att P T AP blir diagonal. 3 Lösning. a En kvadratisk matris har en ortogonal bas av egenvektorer om och endast om den är symmetrisk enligt en sats ur boken. Att A A T betyder i vårt fall precis att a 0, eftersom resten av matrisen är symmetrisk. Alltså kommer den vara ortogonalt diagonaliserbar om a 0. b Vi behöver först bestämma egenvärden och egenvektorer. Den karaktäristiska ekvationen ges av deta λi 0. Vi har att deta λi λ λ λ 8 λ λ 4 4 λ 8 λ λ 4 8 λ λ 4 λ λ λ6 λ. Egenvärdena, som är rötterna till den karaktäristiska ekvationen, är därmed λ, λ 6 och λ 8. Vi får motsvarande egenvektorer genom att lösa det homogena ekvationssystemet med koefficientmatris A λ för dessa värden på λ. Vi får för λ r r 0 r 3 r och lösningen ges av x, x, x 3 t, 0, t, där t är en parameter. För λ 6 får vi r 4 r r 3 + r och lösningen ges av x, x, x 3 t, 0, t, där t är en parameter. För λ 8 får vi r 6 r 3 + r r och lösningen ges av x, x, x 3 0, t, 0, där t är en parameter. De tre egenvektorerna, 0,,, 0, och 0,, 0 tillhör olika egenvärden och är därmed automatiskt ortogonala. För att hitta en ortogonal basbytesmatris P som diagonaliserar A behöver vi nu bara normera egenvektorerna. Vi har att, 0,
9 Svar: SF64 Algebra och geometri - Lösningsförslag till tentamen , 0, och 0,, 0. Alltså får vi en ortogonal matris som diagonaliserar A som och 0 P P T AP P AP b Matrisen P 0 0 gör att P T AP är diagonal. 0
10 0 SF64 Algebra och geometri - Lösningsförslag till tentamen För alla heltal n, låt A n vara n n-matrisen som man får om man skriver upp talen,,..., n i ordning, rad för rad. Till exempel är A och A a Beräkna det A. b Beräkna det A 3 med hjälp av radoperationer. c Visa att det A n 0 för n > 3 genom att påvisa ett linjärt beroende mellan kolonnerna. Lösning. a Vi beräknar det A, exempelvis med kofaktorutveckling, eller med den kända formeln och får det b Vi kan beräkna det A 3 med radoperationer genom det det r r 4r det r 3 7r 0 6 det r r det r 3 r eftersom determinanten av en matris med en nollrad alltid är noll. c Eftersom elementen i varje rad växer med ett från kolonn till kolonn kommer varje kolonn utom de två yttersta att vara lika med medelvärdet av de båda närstående. Därmed har vi linjära relationer c i c i+ + c i+ 0 för i,,..., n, om n 3. Om kolonnerna är linjärt beroende är determinanten alltid noll enligt känd sats. Svar: a det A. b det A 3 0. Var god vänd!
11 SF64 Algebra och geometri - Lösningsförslag till tentamen DEL C 7 Bestäm kortaste avståndet mellan punkten 7, 6, 5 och skärningslinjen mellan planen x z och y i R 3. 4 Lösning. Vi skriver linjens ekvation på parameterform. Vi ser att x, y, z,, 3 är en punkt på linjen. Vektorprodukten kryssprodukten av planens normaler ger linjens riktning:, 0, 0,, 0, 0,. Alltså har linjen ekvationen x, y, z,, 3 + t, 0,. Kortaste vägen från punkten 7, 6, 5 till den givna linjen är att gå ortogonalt mot linjens riktningsvektor, 0,. Vi vill alltså hitta t så att, 0, är ortogonal mot,, 3 + t, 0, 7, 6, 5 t 6, 4, t. Nu är, 0, t 6, 4, t t 6 + 4t 4 5t 0, vilket är noll om och endast om t. Avståndet ges av längden på vektorn t 6, 4, t 4, 4,, vilken är
12 SF64 Algebra och geometri - Lösningsförslag till tentamen Låt V vara vektorrummet av symmetriska -matriser, och låt T : V V vara avbildningen som som ges av TA PAP för alla A i V, där 0 P. 0 a Visa att B { , 0 0 0, 0 är en bas för V. b Visa att T är en linjär avbildning från V till V. c Bestäm matrisen för T med avseende på basen B. Lösning. a Vektorrummet V består av alla symmetriska -matriser. Varje symmetrisk -matris kan skrivas som a b b c } för några reella tal a, b och c. Detta betyder att den kan skrivas som a + b + c Dessutom bestämmer talen a, b och c matrisen fullständigt och därmed är uttrycket unikt. Detta är detsamma som att de tre matriserna B utgör en bas för V. b Att T är en linjär avbildning innebär att TA + A TA + TA och att TkA ka, för alla matriser A, A, A i V och alla skalärer k. Vi kontrollerar att TA + A PA + A P PA P + PA P TA + TA där vi utnyttjat den distributiva lagen för matrismultiplikationen. Vidare ser vi att TkA PkAP kpap kta där vi utnyttjat att mulitplikation med skalär kan göras före eller efter matrismultiplikationen. Vi behöver också kolla att TA verkligen ligger i V för alla A i V. Detta ser vi genom att PAP T P T A T P T PA P PAP om A A T eftersom P är antisymmetrisk och uppfyller P T P. c För att bestämma matrisen för T med avseende på basen B behöver vi beräkna bilderna av de tre basvektorerna och uttrycka dessa i den givna basen.
13 SF64 Algebra och geometri - Lösningsförslag till tentamen Vi får att T T och 0 0 T 0 Svar: Eftersom bilderna av basvektorerna omedelbart blev uttryckta med samma basvektorer får vi direkt matrisen för avbildningen T med avseende på basen B. c Matrisen för avbildningen T relativt basen B ges av A
14 4 SF64 Algebra och geometri - Lösningsförslag till tentamen Betrakta matrisekvationen A 3 A A. a Ge ett exempel på en 3 3-matris som uppfyller ekvationen och som varken är nollmatrisen eller identitetsmatrisen. b Visa att 0 och är de enda möjliga egenvärdena för kvadratiska matriser som uppfyller ekvationen oavsett storlek. 3 Lösning. a Om vi ser på diagonalmatriser uppfyller dessa ekvationen om och endast om alla dess diagonalelement uppfyller ekvationen. Vi har att x 3 x x är ekvivalent med xx x + 0, dvs xx 0. Alltså kan vi välja en diagonalmatris med ettor och nollor på diagonalen, exempelvis A som varken är nollmatrisen eller identitetsmatrisen. Det finns sex olika sådana matriser. b Låtv vara en egenvektor till A och λ motsvarande egenvärde. Då gäller attav λv. Eftersom A 3 A A, får vi att 0 A 3 v A v + Av λ 3 v λ v + λv λλ v. Eftersom v 0, är λ 0 eller λ.
SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-10-28 DEL A 1. Vi har matriserna 1 1 1 1 1 0 3 0 A = 1 1 1 1 1 1 1 1 och E = 0 0 0 1 0 0 1 0. 1 0 0 1 0 1 0 0 (a) Bestäm vilka elementära
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t
SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A 1 a Bestäm de komplexa koefficienterna a, b och c så att polynomet Pz z 3 + az 2 + bz + c har nollställena
A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)
SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar
SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009
SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri
SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.
ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Egenvärden och egenvektorer. Linjär Algebra F15. Pelle
Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två
Lösningar till MVE021 Linjär algebra för I
Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm
x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3)
TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 74-4 kurser:: Linjär Algebra ma4a Matematik för ingenjörer maa 8 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.
SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B
Preliminärt lösningsförslag
Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel
Preliminärt lösningsförslag
Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010
SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
Lösningsforslag till tentamen i SF1624 den 22/ e x e y e z = 5e x 10e z = 5(1, 0, 2). 1 1 a a + 2 2a 4
Institutionen för matematik, KTH Serguei Shimorin Lösningsforslag till tentamen i SF64 den /0 007 Eftersom planet går genom punkten (,, 0, det har ekvation a(x + b(y + + cz = 0, där a, b, c är koefficienter
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 april 5 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 8- Hjälpmedel : Inga hjälpmedel
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
4x az = 0 2ax + y = 0 ax + y + z = 0
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade
SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016
SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen
SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6
TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 5 4 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
TMV142/186 Linjär algebra Z/TD
MATEMATIK Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Chalmers tekniska högskola Datum: 2018-08-27 kl 1400 1800 Tentamen Telefonvakt: Anders Hildeman ank 5325 TMV142/186 Linjär algebra Z/TD Skriv
1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1
ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
Inför tentamen i Linjär algebra TNA002.
Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av
SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016
SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.
UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014
SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Facit/lösningsförslag
Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l
M = c c M = 1 3 1
N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny
UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004
UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara
A = x
Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,
SF1624 Algebra och geometri
SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
Lösningar till utvalda uppgifter i kapitel 8
Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen.
Akademin för teknik och miljö Rolf Källström telefonkontakt med examinator via tentamensvakten Matematiktentamen Ingenjörer, lärare, m fl Linjär algebra maa. 5 6 Skrivtid: 9... Inga hjälpmedel. Lösningarna
3x + y z = 0 4x + y 2z = 0 2x + y = Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x = 1 x + y = 1 x + 2y = 2
TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 3 7 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 UPPGIFT (1) Låt V vara mängden av vektorer (x 1, x 2, x 3 ) i R 3 som uppfyller
Linjär Algebra M/TD Läsvecka 1
Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination
= ( 1) ( 1) = 4 0.
MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)
Del 1: Godkäntdelen. TMV141 Linjär algebra E
Var god vänd! MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV4 Linjär algebra
Del 1: Godkäntdelen. TMV142 Linjär algebra Z
MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 130313 kl 0830 1230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV142 Linjär algebra Z Tentan
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna
denna del en poäng. 1. (Dugga 1.1) (a) Beräkna u (v 2u) om v = u och u har längd 3. Motivera ert svar.
Kursen edöms med etyg 3, 4, 5 eller underkänd, där 5 är högsta etyg För godkänt etyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt 3 poäng För var och en av
Lite Linjär Algebra 2017
Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund
ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas
Uppgifter, 2015 Tillämpad linjär algebra
Geometri. Uppgifter, 25 Tillämpad linjär algebra. Uppgift. Låt (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av linjära
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010 UPPGIFT (1) Betrakta det linjära ekvationssystemet x 1 x 2 + x + 2x 4, x 1 + x
29 november, 2016, Föreläsning 21. Ortonormala baser (ON-baser) Gram-Schmidt s ortogonaliseringsprocess
29 november, 2016, Föreläsning 21 Tillämpad linjär algebra Innehåll: Ortonormala baser (ON-baser) Gram-Schmidt s ortogonaliseringsprocess Minsta-kvadratmetoden - exempel 1. Uppgift. Tentamen 19/1-15, uppgift
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln
ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.
UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 3 6 kl. 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Tony Stillfjord,
SKRIVNING I VEKTORGEOMETRI Delkurs
SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym
Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v
Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2
1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).
N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),
LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Chalmers tekniska högskola Datum: Våren MVE021 Linjär algebra I
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: Våren 6 Övningstentamen Telefonvakt: Thomas Bäckdahl ankn 8 MVE Linjär algebra I Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt
2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1
ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31
ATM-Matematik Mikael Forsberg 734-4 3 3 För studenter på distans och campus Linjär algebra maa Skrivtid: 9:-:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Måndagen den 24 september, 2012
SF64 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 4 september, Låt T : R R 4 vara den linjära avbildningen med standardmatris (a) Bestäm en bas för bildrummet
2s + 3t + 5u = 1 5s + 3t + 2u = 1 3s 3u = 1
ATM-Matematik Mikael Forsberg 074-4 För studenter på distans och campus Linjär algebra ma04a 04 0 5 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska
LINJÄR ALGEBRA HT2013. Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan.
LINJÄR ALGEBRA HT2013 JONAS WIKLUND Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan. 1. LINJÄRA EKVATIONSSYSTEM OCH MATRISER 1.1 Introduktion. Till stor del bör du känna till ekvationslösning
November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)
Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med
Del 1: Godkäntdelen. TMV142 Linjär algebra Z
MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV42 Linjär algebra Z Tentan
Linjär algebra. Föreläsningar: Lektioner: Laborationer:
Linjär algebra Föreläsningar: 08.15-10.00 Lektioner: 10.30-12.00 Laborationer: 13.15-16.00 Datum Sal Kapitel Må 1/9 Hörsal D 1.1-1.2 Ekvationssystem To 4 D 1.3-1.4 Matriser Lektion MA136, 146, 156, MC313