Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Storlek: px
Starta visningen från sidan:

Download "Föreläsningsanteckningar Linjär Algebra II Lärarlyftet"

Transkript

1 Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera denition av linjär avbildning, bildrum och nollrum. Föreläsning III Timme I: Något om basbyten Säg att vi har ett vektorrum V, med två baser, e,..., e n samt f,..., f n. Varje vektor i V kan då skrivas med koordinater, antingen i bas e, eller bas f. Speciellt kan vi nna koordinaterna för f j i basen e, nämligen f j = s j e + s j e s nj e n. Detta ger oss en kvadratisk n n-matris, som vi kallar S. Matrisen S är basbytesmatrisen från f -bas till e-bas. Notera att första kolonnen i S är koordinaterna för f i basen e, och så vidare. Vektorn (,,..., ) T som anger koordinaterna för f i basen f, avbildas på (s, s,..., s nj ), vilket är f :s koordinater i basen e. Matrisen S skickar alltså f-koordinater på e- koordinater. Denna matris är alltid inverterbar, och S gör det omvända bytet, och skickar e-koordinater på f-koordinater. Problem. Vektorerna e, e samt e 3 utgör en bas i R 3. Vektorerna f = e + e 3, f = e + e 3 samt f 3 = e + e utgör också en bas i R 3. Bestäm basbytesmatriserna som byter från f -basen till e-basen, resp. till f -basen. från e-basen Lösning. Notera att f = e + e + e 3. Koecienterna (,, ) blir då första kolonnen i avbildningsmatrisen S, som byter från f-basen till e-basen. På samma sätt får vi ut de andra kolonnerna. Detta ger oss att S = och S =.

2 Om nu S byter från bas f till e, för två baser i ett vektorrum V, och A är avbildningsmatrisen i basen e för en linjär avbildning F : V V, så är B = S AS avbildningsmatrisen för avbildningen F i basen f. Problem. Bestäm avbildningsmatrisen för avbildningen F i basen f = (,, ), f = (,, ) och f 3 = (,, ), där F ges av relationerna F (e ) = e, F (e ) = 3e och F (e 3 ) = e + e 3, där e = (,, ), e = (,, ) samt e 3 = (,, ). Lösning. Vi kan enkelt skriva upp F :s avbildningsmatris i basen e, e, e 3, den ges helt enkelt av A = 3. Notera nu att f = e + e 3, f = e + e 3 samt f 3 = e + e. Vi kan då använda S som vi ck i föregående uppgift. Den sökta avbildningsmatrisen är B = S AS, eftersom S utför basbytet från f-bas till e-bas: B = 3 = Vi skickar alltså in koordinater i basen f och gör om dessa till koordinater i basen e. I denna bas känner vi avbildningsmatrisen, och använder den. Slutligen byter vi tillbaka till f-basen. Test: Vi kollar var f avbildas med F : F (f ) = F (e + e 3 ) = F (e ) + F (e 3 ) = 3e + e 3 () = 3(,, ) + (,, ) = (3,, 4). () Använder vi matrisen B, ser vi at t f avbildas på f f + f 3 eftersom B(,, ) T = (,, ). Men f f + f 3 = (,, ) (,, ) + (,, ) = (3,, 4), vilket tyder på att B verkligen är F i basen f. Varför vill man representera linjära avbildningar i olika baser? Jo, vissa avbildningar är lättare att behandla i speciella baser. Många tillämpningar handlar om att hitta en bas, så att den linjära avbildningen blir lätt att approximera. Till exempel kan man använda detta inom ansiktsigenkänning.

3 Speciellt bra baser, är de som gör att avbildninsmatrisen blir en diagonalmatris: D = 3 Det är då enkelt att beräkna vad som händer om vi gör avbildningen era gånger efter varandra: n D n = ( ) n. 3 n Om A är en avbildning, som med ett lämpligt basbyte kan skrivas som A = S DS där D är en diagonalmatris, följer det att A n = S D n S. Notera att D n kan enkelt beräknas, men A n är svår att beräkna. Om A med hjälp an en inverterbar matris S kan uttryckas som A = S DS säger vi att A är diagonaliserbar. Timme II: Egenvärden och egenvektorer En egenvektor till en kvadratisk matris A, är en vektor v som uppfyller att Av = λv för något tal reellt eller komplext tal λ. Detta tal kallas för egenvärdet till v och man säger också att det är ett egenvärde till A. Om Av = λv följer det att Av λv =. Vi kan bryta ut v genom att sätta in enhetsmatrisen på lämpligt ställe, och får (A λi)v =. Detta innebär precis att v ker(a λi). Vi har nu konstaterat att om v är en egenvektor med egenvärde λ, så tillhör egenvektorn kärnan till matrisen A λi. Eftersom v per denition inte är nollvektorn, måste kärnan vara minst endimensionell. Detta innebär att A λi inte kan ha full rang, så dess determinant, A λi måste vara. Polynomet p(λ) = A λi vi får av att utveckla determinanten, kallas för A:s karakteristiska polynom. Nollställena till det karakteristiska polynomet ger precis A:s egenvärden. Problem 3. (ev-mittag-leffler) Bestäm alla egenvärden och motsvarande egenvektorer till matrisen A = ( ) 3. (3) 8 Lösning. Matrisens karakeriskiska polynom ges av λ 3 8 λ = ( λ)(8 λ) + 6 = λ 9λ = (λ )(λ 7). 3

4 Vi nner att egenvärdena ges av λ = 7, λ =. Egenvektorerna ges nu av ker(a λi), fall λ = 7 ger oss ( ) ( ) 7 3 (4) 8 7 Detta leder till att vektorn (, ) utgör en egenvektor med egenvärde 7 till matrisen A. På samma sätt, fallet λ = ger oss ) ) ( 3 8 ( 3 vilket ger oss egenvektorn (3, ). Sammanfattningsvis, (, ) är en egnvektor med egenvärde 7, och (3, ) är en egenvektor med egenvärde. Sats 6., Om A och B har egenvektor v, med egenvärden λ, µ gäller att A + B, AB, ca har v som egenvektor med egenvärde λ + µ, λµ, cλ resp. Om A inverterbar, har matrisen A vektorn v som egenvektor med egenvärde /λ. (A inverterbar ger att ker A = så λ ). Av = λv v = A λv λ v = A v (5) Vidare, A k har egenvektor v med egenvärde λ k. Om p är ett polynom så gäller att p(a) har v som egenvektor med egenvärde p(λ). Problem 4. (ev-dirac) Bestäm alla egenvärden och bas för motsvarande egenrum till matrisen 5 A =. Lösning. Först bestämmer vi matrisens karakteristiska polynom, genom att beräkna det(a λi). 5 λ ( ) ( ) ( ) λ λ λ = (5 λ) + λ λ λ (6) = (5 λ)(λ λ 3) + (6 λ) ( 6 + λ) (7) = λ 3 + 7λ 5λ + 9. (8) Här gissar vi en heltalsrot, som måste vara en jämn delare till 9. Vi ser att λ = 3 är en rot, och polynomdivision samt lösning av resulterande andragradare ger att karakteristiska polynomet kan faktoriseras som (λ 4

5 3) (λ ). Matrisens egenvärden är då λ = 3 och λ =. Det återstår att bestämma motsvarande egenrum, det vill säga, en bas till lösningsrummet till ekvationssystemet A λi =. Fallet λ = ger oss A I = och ekvationssystemet blir 4 = Dela alla rader med och byt plats på rad och. (9) = Eliminera med första raden. () = Styk sista raden då denna är parallell med andra. () ( ) () I sista steget multiplicerades också andra raden med. Lösningarna ges på parameterform, t(,, ). Egenrummet till egenvärdet λ = spänns alltså upp av vektorn (,, ) och denna vektor är alltså en egenvektor med egenvärde. Fallet λ = 3 ger systemet A 3I = och vi får = Alla rader är lika, stryk de två sista och dividera med. ( (3) ) (4) Vi får ett tvådimensionellt lösningsrum, s(,, ) + t(,, ). Vektorerna (,, ) och (,, ) är då båda egenvektorer med egenvärde 3, och dessa spänner upp det tvådimensionella egenrummet med egenvärde 3. Timme III: Diagonalisering Problem 5. (ev-knuth) Diagonalisera matrisen ( ) 3 A =. (5) 8 Lösning. Vi fann i problem 3 att (, ) är en egenvektor med egenvärde 7, och (3, ) är en egenvektor med egenvärde. Detta ger oss enl. formeln för 5

6 diagonalisering att ( ) ( ) ( ) A =. }{{}}{{}}{{} T D T Problem 6. (ev-conway) Diagonalisera matrisen A som ges i problem 4. Lösning. Vi har i problem 4 bestämt en bas av egenvektorer, (,, ) T, (,, ) T samt (,, ) T och de har motsvarande egenvärden, 3 och 3. Vi kan då diagonalisera A som A = T DT där T är basbytesmatrisen vars kolonner utgörs av egenvektorerna, och D är diagonalmatrisen med motsvarande egenvärden på huvuddiagonalen. Vi har att T = och denna måste inverteras. Vi ställer upp detta som en gausselimination: = Eliminera med första raden (6) = Eliminera med rad och 3 i rad. (7) Således, och = Byt plats och tecken på rad och 3. (8) (9) T = A = T DT = 3. 3 Notera att man kan få ett annat svar på denna uppgift, eftersom det nns många olika val av bas för egenrummet med egenvärde 3. 6

7 Problem 7. (ev-gödel) Visa att matrisen A = () inte kan diagonaliseras. Lösning. För att en 3 3-matris skall kunna diagonaliseras, måste vi nna tre linjärt oberoende egenvektorer. Den karakteristiska ekvationen till A ges av A λi = ( λ) 3 eftersom A λi är övertriangulär. Vi har alltså enbart egenvärdet. Vi bestämmer nu en bas för motsvarande egenrum, vilket för λ = ges av kärnan till A I: () Eftersom rangen för denna matris är ett, är kärnan tvådimensionell (en bas för kärnan är (,, ) T och (,, ) T ). Vi behöver ett tredimensionellt rum av egenvektorer, så matrisen kan inte diagonaliseras. I allmänhet så kan man inte diagonalisera övertriangulära matriser som är av storlek eller mer, där alla diagonalelement är samma och matrisen är inte en multipel av identitetsmatrisen. Timme IV: Tillämpningar av diagonalisering Kom ihåg att om A = T DT, så har vi att A n = T D n T. Problem 8. (ev-sierpinski) På ett universitet så studeras två ämnen, teoretisk fysik och virkning. Varje år, så börjar % av de som är sysslolösa med teoretisk fysik, och % av de som studerar teoretisk fysik byter till virkning. Slutligen, av de som virkar, byter 3% av studenterna till teoretisk fysik. Övriga personer fortsätter med samma syssla som de hade tidigare. Om det ett visst år nns personer som ägnar sig åt att vara sysslolös, studera fysik resp. virka, hur ser fördelningen ut efter ett år? Närmar sig fördelningen ett stabilt tillstånd med åren? Bestäm vilken i sådana fall. Lösning. Vi kan beskriva övergångarna med en övergångsmatris A, där kolonn j beskriver hur grupp j omfördelas. Element a ij säger hur stor procent som 7

8 går från grupp j till grupp i. I A motsvarar kolonnerna de sysslolösa, de som studerar fysik, resp. de som virkar. Övergångsmatrisen ges då av A = och vår startvektor är v = (,, ) T. Varje övergång mellan den årliga fördelningen representeras då av en matrismultiplikation. Nästföljande års fördelning ges av v = Av och så vidare. Vi nner efter matrismultiplikation att v = (96, 56, 8), så detta är fördelningen av studenter efter ett år. Vad som nu eftersöks är beteendet av A n v då n, vilket vi kan undersöka genom att diagonalisera A. Karakteristiska polynomet ges av 8 A λi = λ 8 λ 3 7 λ = 8 λ 8 λ 3 7 λ. () Utveckling längs med första raden ger A λi = (8 λ) 8 λ 3 7 λ (3) = (8 λ) [(8 λ)(7 λ) 6] (4) = (8 λ)(λ 5λ + 5) (5) = 5 (8 λ)(λ 3λ + ). (6) Detta leder till egenvärdena λ = 8, λ =, λ 3 =. Vi beräknar nu motsvarande egenvektorer: Fallet λ = 8 ger oss 3 3 (7) och vektorn u = (3,, ) T är en bas för motsvarande egenrum. Fallet λ = ger oss (8) 8

9 och vektorn u = (, 3, ) T är en bas för motsvarande egenrum. Slutligen, fallet λ 3 = ger oss (9) och vektorn u 3 = (,, ) T är en bas för motsvarande egenrum. Basbytesmatrisen T ges då av kolonnerna u, u, u 3 och 3 T = 3, T = (3) Alltså diagonaliseras A som T DT och eftersom A n = T D n T får vi ( 3 8 n ) A n = 3 n 5 ( 5 ) (3) n Notera att då n, så gäller det att ( ) 8 n ( och 5 n ). Gränsfördelningen, A n v blir då (3) Beräknar vi denna produkt, får vi slutligen vektorn (, 6, 44) T som då är den stabila gränsfördelningen. Problem 9. (ev-hamilton) Bestäm en matris B så att B 3 = ( ) Lösning. Låt säga vi har en diagonaliserbar matris A = T DT. Om D 3 ges av diagonalmatrisen D men med kubikroten ur alla element, så följer det att (T D 3 T ) 3 = (T D 3 D 3 D 3 T ) = T DT = A. Strategin blir då att diagonalisera matrisen ( )

10 En snabb beräkning ger oss egenvärdena 8 och. Egenvärdet 8 leder till beräkningen ( ) ( ) (33) 5 5 så motsvarande egenvektor blir (, ) T. På samma sätt, egenvärdet leder till ( ) ( ) 5 5 (34) 5 och en egenvektor fås av (, 5) T. Diagonalisering ger nu att ( ) ( ) ( ) 6 8 = } {{ } D ( ) 5. (35) 7 Matrisen B = ( ) ( 5 ) }{{} D 3 ( ) 5 = 7 7 ( ) 5 9 (36) har då ha egenskapen vi söker.

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)

November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs) Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln

Läs mer

Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare

Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare Per Alexandersson February 27, 2013 Abstract Här är läsanvisningar samt några kompletterande uppgifter till materialet i kursboken

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Lösningar till utvalda uppgifter i kapitel 8

Lösningar till utvalda uppgifter i kapitel 8 Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II PER ALEXANDERSSON Sammanfattning. Detta är en samling kompletterande uppgifter till Linjär Algebra II för lärare. Exemplen är av varierande svårighetsgrad och

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 april 5 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 8- Hjälpmedel : Inga hjälpmedel

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016 Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016 SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

DEL I 15 poäng totalt inklusive bonus poäng.

DEL I 15 poäng totalt inklusive bonus poäng. Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Linjär algebra/matematik. TM-Matematik Mikael Forsberg ma014a, ma031a

Linjär algebra/matematik. TM-Matematik Mikael Forsberg ma014a, ma031a TM-Matematik Mikael Forsberg 074 41 1 Linjär algebra/matematik för ingenjörer ma014a, ma01a 011 0 8 Skrivtid: 09:00-14:00. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar.

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar. TM-Matematik Mikael Forsberg 7 Linjär algebra/matematik för ingenjörer maa, maa 5 6 Skrivtid: 9:-:. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara fullständiga och lätta

Läs mer

A = x

A = x Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II PER ALEXANDERSSON Sammanfattning. Detta är en samling kompletterande uppgifter till Linjär Algebra II för lärare. Exemplen är av varierande svårighetsgrad och

Läs mer

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Bo Styf Prov i matematik F, X, ES, KandFys, Lärare, Frist, W, KandMat1, Q LINJÄR ALGEBRA II 010 08 4 Skrivtid: 1400 1900 Tillåtna hjälpmedel:

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:

Läs mer

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 1 Matematiska Institutionen, KTH Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 08.00-13.00. Examinator: Olof Heden. OBS: Inga

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p) SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar

Läs mer

Lösningar till MVE021 Linjär algebra för I

Lösningar till MVE021 Linjär algebra för I Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter

Läs mer

Egenvärden, egenvektorer

Egenvärden, egenvektorer Egenvärden, egenvektorer Om en matris är kvadratisk (dvs n n) kan vi beräkna egenvärden och egenvektorer till matrisen. Polynomet p(λ) = det(a λi) kallas det karakterisktiska polynomet för A. Ett nollställe

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004 UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara

Läs mer

19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN

19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN 9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar

Läs mer

8(x 1) 7(y 1) + 2(z + 1) = 0

8(x 1) 7(y 1) + 2(z + 1) = 0 Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas

Läs mer

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

Uppgifter, 2015 Tillämpad linjär algebra

Uppgifter, 2015 Tillämpad linjär algebra Geometri. Uppgifter, 25 Tillämpad linjär algebra. Uppgift. Låt (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av linjära

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0.

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0. Avsnitt Egenvärden och egenvektorer W Vilka av följande matriser är ortogonala? b d En matris A a a a n a a a n a a a n a m a m a mn är en ortogonal matris om dess kolumner bildar en ON-bas för rummet

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

n = v 1 v 2 = (4, 4, 2). 4 ( 1) + 4 ( 1) 2 ( 1) + d = 0 d = t = 4 + 2s 5 t = 6 + 4s 1 + t = 4 s

n = v 1 v 2 = (4, 4, 2). 4 ( 1) + 4 ( 1) 2 ( 1) + d = 0 d = t = 4 + 2s 5 t = 6 + 4s 1 + t = 4 s LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 7-8-4 kl 4 9 a) Triangelns sidor ges av vektorerna v OP OP (,, ) och v OP 3 OP (,, 4) som även blir riktningsvektorer till planet En normal

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och

Läs mer

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS DIAGONALISERING AV EN MATRIS Definition ( Diagonaliserbar matris ) Låt A vara en kvadratisk matris dvs en matris av typ n n. Matrisen A är diagonaliserbar om det finns en inverterbar matris P och en diagonalmatris

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

TMV166 Linjär Algebra för M. Tentamen

TMV166 Linjär Algebra för M. Tentamen MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 3 6 kl. 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Tony Stillfjord,

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

A = v 2 B = = (λ 1) 2 16 = λ 2 2λ 15 = (λ 5)(λ+3). E 5 = Span C =

A = v 2 B = = (λ 1) 2 16 = λ 2 2λ 15 = (λ 5)(λ+3). E 5 = Span C = KTH Matematik Lösningar till Kapitel 7 A a Karakteristiska polynomet av detλi A det A λ λ λ b Egenvdena av A nollställen till karakteristiska polynomet alltså har A egenvdet λ c Motsvarande egenrum E lösningsrummet

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

1 Diagonalisering av matriser

1 Diagonalisering av matriser 1 Diagonalisering av matriser Kan alla matriser diagonaliseras? Nej, det kan de inte. Exempel: ẋ 1 = x 1 + 2x 2, Integrerande faktor: e t x 2 = x 2 x 2 (t) = c 2 e t och ẋ 1 x 1 = 2c 2 e t. e t x 1 e t

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Uppgifter, 2014 Tillämpad linjär algebra

Uppgifter, 2014 Tillämpad linjär algebra Geometri. Uppgifter, 24 Tillämpad linjär algebra. Uppgift. Låt A = (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av

Läs mer

3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6

3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6 TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 5 4 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och

Läs mer

x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p)

x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p) Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Diagonalisering och linjära system ODE med konstanta koe cienter.

Diagonalisering och linjära system ODE med konstanta koe cienter. Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

TMV142/186 Linjär algebra Z/TD

TMV142/186 Linjär algebra Z/TD MATEMATIK Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Chalmers tekniska högskola Datum: 2018-08-27 kl 1400 1800 Tentamen Telefonvakt: Anders Hildeman ank 5325 TMV142/186 Linjär algebra Z/TD Skriv

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-10-28 DEL A 1. Vi har matriserna 1 1 1 1 1 0 3 0 A = 1 1 1 1 1 1 1 1 och E = 0 0 0 1 0 0 1 0. 1 0 0 1 0 1 0 0 (a) Bestäm vilka elementära

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med

Läs mer

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet 1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:

Läs mer

Del 1: Godkäntdelen. TMV142 Linjär algebra Z

Del 1: Godkäntdelen. TMV142 Linjär algebra Z MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 130313 kl 0830 1230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV142 Linjär algebra Z Tentan

Läs mer

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

Facit/lösningsförslag

Facit/lösningsförslag Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l

Läs mer

LYCKA TILL! kl 8 13

LYCKA TILL! kl 8 13 LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade

Läs mer

Exempelsamling :: Diagonalisering

Exempelsamling :: Diagonalisering Exempelsamling :: Diagonalisering Mikael Forsberg :: 8 oktober Uppgifter om diagonalisering. Hitta en matris som diagonaliserar matrisen A = ( Vad blir diagonalmatrisen D? Vad betder D geometriskt? Vad

Läs mer

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 14.00-19.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer