Inför tentamen i Linjär algebra TNA002.
|
|
- Astrid Sandberg
- för 7 år sedan
- Visningar:
Transkript
1 Inför tentamen i Linjär algebra TNA Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av sådan system. (c) Övningar: 2.1, 2.2, 2.3, 2.4, 2.5, Vektorgeometri (a) Vad är en vektor respektive en ortsvektor. (b) Bestämma en vektor mellan 2 punkter. (c) Räknelagarna för vektorer. (d) Beräkna längd av en vektor samt avstånd mellan 2 punkter. (e) Övningar: 4.1, Skalärprodukt (a) Definition av skalärprodukt med och utan vinkel. (b) Bestämma vinkeln mellan 2 vektorer. (c) Begreppet ortogonalitet. Vad menas med att 2 vektorer är ortogonala. (d) Vad är en ON-bas. (e) Ortogonalprojektion av en vektor på en annan. (f) Övningar: 6.5, 6.7, 6.8, 6.9, Linjer och plan (a) Bestämma ekvationen för en linje givet a) en punkt och en riktningsvektor b) 2 punkter (b) Bestämma skärningspunkten mellan 2 linjer (c) Kunna projicera och spegla en punkt i en linje. (d) Beräkna avståndet från en punkt till en linje, från en linje till en annan. (e) Kunna bestämma ekvationen för ett plan givet a) en punkt och en normal b) 3 punkter (f) Kunna omskrivningen från normalekvation till parameterform och vice versa. (g) Bestämma skärningen mellan a) en linje och ett plan b) två eller flera plan. (h) Kunna projicera ortogonalt och spegla en punkt i ett plan. (i) Beräkna avståndet från a) en punkt till ett plan b) en linje till ett plan c) ett plan till annat plan. (j) Övningar: 10.6, 10.9, 10.10, 10.12, 10.13, 10.14, 10.17,
2 5. Vektorgeometri (a) I planet eller rummet begrepp som i. Linjärkombination ii. Linjärt beroende och oberoende iii. Koordinater iv. Bas v. ON-bas (b) Geometriska tolkningar av bgreppen ovan. Dessa är viktiga för att bygga upp förståelsen av linjär algebran. (c) Lösa de ekvationssystem som dyker upp när Du har ställt upp dessa definitioner. (d) Övningar: 4.9, 4.10, 4.11, 4.12, Vektorprodukt (a) Definition av vektorprodukt. (b) Vad som med menas med ett högerorienterat system {e 1,e 2,e 3 }. (c) Vektorprodukt mellan basvektorerna, dvs e 1 e 2, e 1 e 3, e 2 e 3. (d) Beräkna vektorprodukt mellan 2 vektorer mha en determinant. (e) Tillämpningar: i. Bestämma en normal till ett plan ii. Beräkna arean av en parallellogram iii. Beräkna volymen av parallellpiped (f) Övningar: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, Matriser (a) Räknelagarna för matriser. (b) Transponera en matris. (c) Räknelagarna för transponat. (d) Bestämma om möligt en invers till en kvadratisk matris. (e) Räknelagarna för invers. (f) Lösa matrisekvationer. (g) Övningar: 12.1, 12.3, 12.4, 12.5, 12.6, Determinanter (a) Vilka matriser man kan beräkna determinanten för. (b) Beräkna determinanten samt räknalagarna för determinanter. (c) Tillämpa determinantens värde i olika samanhang; Sats 13.8 är viktig. (d) Övningar: 14.1, 14.4, 14.6, 14.7,
3 9. Linjära rum (a) Definitionen av ett linjärt rum V. (b) Exempel på V. Speciellt R n. (c) Definition av underrum U i V. (d) Exempel på U. Speciellt linje genom origo och plan genom origo R n. (e) Låt M = {v 1,v 2,...,v n } var en mängd i V. i. Linjärkombination. Bestämma om u är en linjärkomination M. ii. Linjära höljet. Bestämma linjära höljet [M]. Tolka [M] geometriskt. iii. Linjärt beroende. Avgöra om M är linjärt beroende eller oberoende. iv. Identifiera och stryka vektorer i M som är kombinationer och därmed överflödiga. v. Bas. Bestämma en bas i M. vi. Dimension. Bestämma dim[m]. vii. Utvidga basen i [M] till en bas för hela V. (f) Självklart kan vektorer ovan vara polynom, funktioner och matriser. (g) Övningar: 16.1, 16.2, 16.3, 16.4, 16.5, (h) Övningstenta A: 1. Övningstenta C: Euklidiska rum (a) Kunna definitionen av en skalärprodukt på ett linjärt rum. (b) Kunna definitionen av euklidiska rum. (c) Behärska och använda begrepp som norm, avstånd och ortogonalitet, se Definition (d) Verifiera om en given mängd i ett euklidiska rum är en ON-mängd, se Definition (e) Vad är en ON-bas? (f) Kunna att en ON-mängd är en linjärt oberoende mängd, se Sats (g) Bestämma koordinatern för en vektor i en ON-bas, dvs utveckla vektorn i ONbasen, se också Sats (h) Kunna ortogonala projektionen av en vektor på ett underrum, se Definition (i) Veta vad ett ortogonal komploment till ett underrum är, se Anmärkning (j) Fylla ut en ON-bas i ett underrum till en ON-bas för hela rummet. (k) Dela upp en vektor i två komposanter; den ena parallell med ett undderum och den andra parallell med ortogonala komplementet. (l) Kunna Gram-Schmidts ortogonaliseringsprocess. (m) Övningar: 18.1, 18.2, 18.3, 18.4, 18.5, (n) Tentamen : 5. Övningstenta B: 7b,c. Övningstenta C: 7. 3
4 11. Minsta kvadratmetoden (a) Kunna härleda normalekvationen. (b) Förstå geometriskt normalekvationen. (c) Lösa ekvationssystemet som annars saknar lösning i minsta kvadratmening. (d) Anpassa en rät linje till en given mängddata. (e) Beräkna felet vid lösning i minsta kvadratmening. (f) Övningar: 20.1, 20.2, 20.3, Linjära avbildningar (a) Vad är en linjär avbildning, hur ser definitionen ut, vad är en urbild resp. en bild, vad menas med additiv samt homogen är exempel på frågor du kunna svara på. (b) Kunna avgöra om en avbildning är linjär resp. icke linjär. (c) Härleda och kunna matrisframställningen till en linjär avbildning. (d) Förstå hur en avbildning och dess avbildningsmatrisen hör ihop. (e) Bestämma avbildningsmatrisen till en linjär avbildning. (f) Bestämma avbildningsmatriser till linjära avbildningar såsom ortogonal projektion på linje eller plan, spegling i linje eller plan samt rotation i planet eller rummet. (g) Använda projektionsformeln eller egenskaperna hos avbildningen för att bestämma mastrisen. (h) Bestämma bilden hos avbildningarna ovan för någon given vektor. (i) Övningar: 22.2, 22.3, 22.4, 22.5, 22.6, 22.7, 22.8, 22.9, 22.10, 22.14, 22.16, 22.17, 22.18, 22.19, (j) Tentamen : 1, 4, 6, 7. Övningstenta A: 4, 5, 6, 7. Övningstenta B: 1, 4, 5, 6, 7a. Övningstenta C: 1,5, Egenvärden och egenvektorer (a) Definiera samt bestämma egenvärden och egenvektorer till en linjär avbildning, se Definition (b) Egenrummet till ett egenvärde, se Definition (c) Egenvärden och egenvektorer till en ortogonal projektion på samt en spegling i ett plan respektive en linje, se Exempel (d) Att en rotation endast har ett reellt egenvärde λ = 1 med tillhörande egenvektor parallell med rotaionaaxeln. (e) Att matrisen till en linjär avbildning ges, i en bas av egenvektorer, av en diagonalmatris med egenvärden på diagonalen. (f) Definition samt kunna lösa sekularekvationen, se Sats (g) Vad en diagonaliserbar matris är samt diagonalisera en sådan, se Sats (h) Att en linjär avbildning med skilda egenvärden har linjärt oberoende egenvektorer samt att antalet egenvärden är lika med dimmensionen på V, Sats
5 (i) Om F är en symmetrisk linjär avbildning på ett euklidiskt rum E n, så är i. Egenvektorer till skilda egenvärden ortogonala, se Sats ii. Egenvärdena reella, se Sats iii. Spektralsatsen: E n har en ON-bas av egenvektorer, se Sats iv. Matrisen A till F är diagonaliserbar, dvs A = TDT 1, se Sats (j) Med hjälp av egenvärdena och egenvektorerna till en avbildning F utreda den geometriska betydelsen av F, se Exempel (k) Övningar: 27.1, 27.3, Kvadratiska former (a) Definition av kvadratiska former. (b) Uttrycka en kvadratisk form på matrisform. (c) Uttrycka en kvadratisk form i en kanonisk bas, dvs i ON-bas av egenvektorer. (d) Bestämma största och minsta värde till en kvadratisk form på en given yta, t.ex. en sfär. (e) Karaktärisera om en kurva är en ellips, hyperbel eller räta linjer. (f) Bestämma punkter på kurvan som ligger närmast respektive längst bort från en given punkt, t.ex. origo. (g) Samma sak som ovan fast för ytor. (h) Övningar: 27.8, 27.9, 27.10, 27.11, 27.12, (i) Tentamen : 2. Övningstenta A: 2. Övningstenta B: 2. Övningstenta C: Linjära system (a) Skriva ett system av differentialekvationer på matrisform. (b) Diagonalisera matrisen och få ett diskritisert system. (c) Gå tillbaka och bestämma den allmänna lösningen. (d) Bestämma en speciell lösning. (e) Samma sak för differensekvationer. (f) Övningar: 27.16, 27.17, 27.18, 27,20, 27.21, (g) Tentamen : 3. Övningstenta A: 3. Övningstenta B: 3. Övningstenta C: 4. 5
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
Linjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN
9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
Linjär algebra kurs TNA002
Linjär algebra kurs TNA002 Lektionsanteckningar klass ED1 I detta dokument finns ett utdrag av de tavelanteckningar som uppkommit under lektionstid under kursen TNA002. Alltså kan detta dokument långt
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.
ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004
UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
Lite Linjär Algebra 2017
Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
TMV166 Linjär algebra för M, vt 2016
TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare
Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016
Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).
N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),
1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1
ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.
Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.
SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B
6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp
6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet
Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.
Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v
LYCKA TILL! kl 8 13
LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till
SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016
SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen
Linjär algebra F1, Q1, W1. Kurslitteratur
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra för F1, Q1, W1 Kurslitteratur Höstterminen 2006 Eriksson Lind Persson Tengstrand, Algebra för universitet och högskolor, Band II (Linjär Algebra),
Linjär algebra och geometri I
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Jörgen Östensson Vårterminen 2010 Kurslitteratur Linjär algebra och geometri I för X, geo, frist, lärare H. Anton, C. Rorres, Elementary Linear Algebra (Application
14. Minsta kvadratmetoden
58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?
Lösningar till MVE021 Linjär algebra för I
Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.
A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)
SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Vladimir Tkatjev Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. Kursperiod: 18 januari 18 maj Examinator och föreläsare: Vladimir Tkatjev: B-huset,
Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2015.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Vladimir Tkatjev Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2015. Kursperiod: 19 januari 21 maj Examinator och föreläsare: Vladimir Tkatjev: B-huset,
Linjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2009 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym
Kursplanering för Linjär algebra, HT 2003
Kursplanering för Linjär algebra, HT 2003 Mikael Forsberg 12 augusti 2003 Innehåll 1 Kursbok 2 2 Kursinnehåll 2 2.1 Kursens uppläggning......................... 2 2.2 Målsättning..............................
2s + 3t + 5u = 1 5s + 3t + 2u = 1 3s 3u = 1
ATM-Matematik Mikael Forsberg 074-4 För studenter på distans och campus Linjär algebra ma04a 04 0 5 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Egenvärden och egenvektorer. Linjär Algebra F15. Pelle
Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor
1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3)
TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 74-4 kurser:: Linjär Algebra ma4a Matematik för ingenjörer maa 8 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta
November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)
Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med
SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31
ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
8. Euklidiska rum 94 8 EUKLIDISKA RUM
94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.
LINJÄR ALGEBRA HT2013. Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan.
LINJÄR ALGEBRA HT2013 JONAS WIKLUND Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan. 1. LINJÄRA EKVATIONSSYSTEM OCH MATRISER 1.1 Introduktion. Till stor del bör du känna till ekvationslösning
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3
Facit/lösningsförslag
Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
Linjär algebra. Föreläsningar: Lektioner: Laborationer:
Linjär algebra Föreläsningar: 08.15-10.00 Lektioner: 10.30-12.00 Laborationer: 13.15-16.00 Datum Sal Kapitel Må 1/9 Hörsal D 1.1-1.2 Ekvationssystem To 4 D 1.3-1.4 Matriser Lektion MA136, 146, 156, MC313
ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas
Linjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm
SF1624 Algebra och geometri
SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del
(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0.
TM-Matematik Mikael Forsberg, 734-4 3 3 Rolf Källström, 7-6 93 9 För Campus och Distans Linjär algebra mag4 och ma4a 6 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta
där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid:
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 9 6, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Matematik med datalogi, mfl. Linjär algebra ma014a ATM-Matematik Mikael Forsberg
ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Linjär algebra ma4a Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje n uppgift
A = x
Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,
4x az = 0 2ax + y = 0 ax + y + z = 0
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade
LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 18 september 2014
LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen 18 september 2014 Kursinformation Linjär Algebra för I1 och Ii1. Examinator: Kurslitteratur: Janfalk, Ulf: Linjär algebra, 2014 Examination: Efter
1 x 1 x 2 1 x x 2 x 2 2 x 3 2 A = 1 x 3 x 2 3 x x 4 x 2 4 x 3 4
KARLSTADS UNIVERSITET Avdelningen för matematik Tentamen i Linjär Algebra, 7,5p för MAGA4 Mån -6-7, 8.5-3.5 på Kau Ansvarig lärare: Ilie Barza, tel.54-7 5 95 Hjälpmedel: Skrivdon. Maximalt antal poäng:
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Tentamen i ETE305 Linjär algebra , 8 13.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk ( p) ( p) ( p) ( p) ( p) ( p) Tentamen i ETE Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker
Övningstenta 001. Alla Linjär Algebra. TM-Matematik Sören Hector Mikael Forsberg. 1. x 2y z + v = 0 z + u + v = 3 x + 2y + 2u + 2v = 4 z + 2u + 5v = 0
TM-Matematik Sören Hector Mikael Forsberg Alla Linjär Algebra Övningstenta. x z + v z + u + v 3 x + + u + v 4 z + u + 5v. (a) Bestäm storleken (absolutbeloppet) och argumentet till z i. (b) Uttrck på formen
Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v.
Kapitel 1 Vektorer Vektorbegreppet 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. 1.2 Rita ut vektorerna u=(3,1) och v=( 2,2) i samma koordinatsystem. Illustrera additionerna/subtraktionerna
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Veckoblad 4, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också
2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1
ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 29 augusti 2018
LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen 29 augusti 2018 Kursinformation Linjär Algebra för I1 och Ii1. Examinator: Kurshemsida: http://courses.mai.liu.se/gu/tata31/ Kurslitteratur: Janfalk,
16.7. Nollrum, värderum och dimensionssatsen
170 16 LINJÄRA AVBILDNINGAR 16.7. Nollrum, värderum och dimensionssatsen Definition 16.33. Låt F : V W vara en linjär avbildning. 1. Nollrummet till F definierar vi som mängden av alla u V, vilkas bild
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 8 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
Föreläsningsplanering och lektionsplanering 764G01
Föreläsningsplanering och lektionsplanering 764G01 Uppgifter märkta med B är från boken, U från utdelat material och P från problemsamlingen. Uppgifter i kursiv stil rekommenderas för dem som vill fördjupa
Uppgifter, 2015 Tillämpad linjär algebra
Geometri. Uppgifter, 25 Tillämpad linjär algebra. Uppgift. Låt (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av linjära
Linjär algebra och geometri 1
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear
Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II
UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Bo Styf Prov i matematik F, X, ES, KandFys, Lärare, Frist, W, KandMat1, Q LINJÄR ALGEBRA II 010 08 4 Skrivtid: 1400 1900 Tillåtna hjälpmedel:
16.7. Nollrum, värderum och dimensionssatsen
86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,
2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
{ 1, om i = j, e i e j = 0, om i j.
34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt
Linjär algebra och geometri I
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Anders Johansson Linjär algebra och geometri I för Energi, Ma-kand., Frist. Höstterminen 2010 Kurslitteratur H. Anton, C. Rorres, Elementary Linear Algebra