där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.
|
|
- Bo Ström
- för 9 år sedan
- Visningar:
Transkript
1 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid: 5 timmar Hjälpmedel: Linjal Denna tentamen består av åtta om varannat slumpmässigt ordnade uppgifter som vardera kan ge maximalt 5 poäng. Den maximalt möjliga poängsumman är således 40. För betygen 3, 4 och 5 krävs minst 8, 6 respektive 34 poäng. Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i. Undvik speciellt att skriva på baksidor av lösningsblad.. Den linjära avbildningen F : R 5 R 3 har i berörda standardbaser matrisen Bestäm F :s nollrum och F :s värderum, och uttryck dem som linjära höljen genererade av en uppsättning basvektorer i respektive rum.. Låt A = [3,,, 4), 7, 3, 3, 7)] och B = [4,, 3, 3), 3, 9, 3, 6)] vara två underrum till R 4. Bestäm om möjligt en bas i skärningsrummet A B. 3. Bestäm längderna av och vinkeln mellan vektorerna e och e e 3 i det euklidiska rum E för vilket skalärprodukten är fixerad till u v = x y + x y + x y + x y x y 3 x 3 y + 5x 3 y 3, där x, x, x 3 ) och y, y, y 3 ) är koordinaterna för u respektive v i basen e, e, e Den linjära operatorn F : R 3 R 3 har det linjära höljet [3,, )] som sitt nollrum, har, 0, ) som en egenvektor med egenvärdet, och avbildar, 3, 0) på 3,, 0). Bestäm F :s matris i standardbasen och avgör om operatorn är inverterbar eller ej. 5. Utgå från att x, y, z) betecknar koordinater i ett ON-system och förklara vad ekvationen xz + y = beskriver för typ av yta. Bestäm speciellt avståndet mellan ytan och origo, samt avgör om någon rotationssymmetri föreligger bestäm i så fall, uttryckt i det givna ON-systemet, ekvationen för rotationsaxeln). 6. Låt M vara ett underrum till E 4, definierat enligt M = {x, x, x 3, x 4 ) E 4 : x + x + x 4 = 0, x + x + x 3 = 0}. Bestäm den ortogonala projektionen av vektorn v = 6, 8, 3, ) på M. 7. Den linjära operatorn F : R 3 R 3 har i basen e, e, e 3 matrisen 0 0 A = 0 β β β 0 5 där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F. 8. Låt S vara det linjära rummet av alla reellvärda och symmetriska -matriser, och beteckna med e, e, e 3 och f, f, f 3 matrisuppsättningarna ) ) ) ) ) ),, respektive,, Visa att e, e, e 3 är en bas i S. Visa sedan att även f, f, f 3 är en bas i S. Specificera i detta sammanhang basbytesmatrisen T i ett ) byte från e-basen till f-basen. Bestäm slutligen koordinaterna för matrisen i basen f, f, f 3. 3
2
3
4
5
6
7 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA99 Linjär algebra BEDÖMNINGSPRINCIPER med POÄNGSPANN Läsår: 03/4,0,0,,0,)] V F) [, 3,4),,, ) ] [,0,5),0,,)] POÄNGSPANNN maxpoäng) för f olika delmoment i uppgifterr bestämt enn radkanonisk, eller en nästintill rad- kanonisk, matris som är radekvivalent med avbildningens matris, dvs i praktiken förberett för att kunna bestämma N F) och V F ) 3p: Korrekt bestämt enn bas i och spannet för N F) bestämt enn bas i och spannet förr V F ). En bas i A B är t.ex. 7,, 0,4) formuleratt en test-)ekvation som prövar om det finns gemensamma, icke-triviala vektorer i de linjära rummen A [ u, u ] och B [ v, v ], dv vs om det finns koordinater x, x ) respektive y, y ) så s att xu x u yv y v löst det uppkomna ekvationssystemet 3p: Korrekt från det Gausseliminerade ekvationssystemet identifierat en bas i A B 3. e e e e, e e3 tolkat hur den givna skalärprodukten tillämpas beräknat längden av vektorn e beräknat längden av vektorn e e 3 p: Korrekt beräknat vinkeln v mellan vektorerna Operatorn F är inte inverterbar tolkat nollrummet somm rymmande de kolonn- vektorer vilka avbildas på nollvektorn, dvs att sambandet T T A 3 ) 0 0 0) gäller för avbildningsmatrisen A tolkat informationen om egenvektorn och om avbildningen av den tredje vektorn, samt korrekt samman- ställt allt det givna som ett matrissamband för avbildningsmatrisen A p: Korrekt löst den uppkomna matrisekvationen avgjort attt avbildningen inte är inverterbar Tentamen N F) [ 3, 3,, 0,0),,,0,,0), 5. Ekvationen kan genom omformas till ~ diagonalisering ~ x y ~ z som beskriver en enmantlad rotations- längs hyperboloid med rotationsaxeln linjen xx, y, z) t,0, ), t R, och med ett avstånd tilll origo lika med bestämt egenvärden och egenvektorer till den symmetriska avbildning som i den givna basen har den kvadratiska formenn xz y bestämt enn ortogonal basbytesmatris som diagonaliserar den kvadratiskaa formen xx z y funnit att ekvationen e geometriskt betyder en enmantlad rotationshyperboloid funnit ekvationen för rotationsaxeln bestämt avståndet mellan ytan och origo )
8 6.,,, 3) 7. Beta Diag.bar Bas av egenvektorer, 5 Ja 3,, ), 0,,0), 0,,5 ) Ja, 0, 0), 0,,0), 0, 0,) funnit en bas i M p: Korrekt ortonormaliserat basen bestämt ett uttryck för den ortogonala projektionen av vektorn v 6,8,3,) på M beräknat den ortogonala projektionen av vektorn v 6,8,3,) på underrummet M avgjort vad som gäller i fallet, 5 avgjort vad som gäller i fallet avgjort vad som gäller i fallet 5 i fallet, 5 funnit en bas av egenvektorer i fallet funnit en bas av egenvektorer 5 Nej existerar ej 8. T 3 Matrisen har i basen f, f, f3 3 koordinaterna, 5, 5) visat ett vektorerna e, e, e3 utgör en bas i det linjära rummet S visat att också f, f, f3 utgör en bas i det linjära rummet S funnit basbytesmatrisen T i ett basbyte från e, e, e3 till f, f, f3 p: Korrekt bestämt koordinaterna för matrisen 3 i basen f, f, f3 )
UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004
UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara
Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA
UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till
Egenvärden och egenvektorer. Linjär Algebra F15. Pelle
Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor
November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)
Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med
Inför tentamen i Linjär algebra TNA002.
Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.
Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v
LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v
4x az = 0 2ax + y = 0 ax + y + z = 0
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade
x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p)
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
Dagens ämnen. Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former. Andragradskurvor
Seminarium 25 Dagens ämnen Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former Matrisform Diagonalisering av kvadratiska former Andragradskurvor De olika kurvtyperna Rita graferna
För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31
ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll
Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016
Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1
16.7. Nollrum, värderum och dimensionssatsen
170 16 LINJÄRA AVBILDNINGAR 16.7. Nollrum, värderum och dimensionssatsen Definition 16.33. Låt F : V W vara en linjär avbildning. 1. Nollrummet till F definierar vi som mängden av alla u V, vilkas bild
SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014
SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Linjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
16.7. Nollrum, värderum och dimensionssatsen
86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,
Basbyte (variabelbyte)
Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.
ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II
UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Bo Styf Prov i matematik F, X, ES, KandFys, Lärare, Frist, W, KandMat1, Q LINJÄR ALGEBRA II 010 08 4 Skrivtid: 1400 1900 Tillåtna hjälpmedel:
Facit/lösningsförslag
Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l
EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II
EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II PER ALEXANDERSSON Sammanfattning. Detta är en samling kompletterande uppgifter till Linjär Algebra II för lärare. Exemplen är av varierande svårighetsgrad och
{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra Datum: 7
Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 8-- kl 4-9 a) Triangelns area är en halv av parallellograms area som spänns upp av tex P P (,, ) och P P (,, ), således area av P P P (,, ) (,,
2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar.
TM-Matematik Mikael Forsberg 7 Linjär algebra/matematik för ingenjörer maa, maa 5 6 Skrivtid: 9:-:. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara fullständiga och lätta
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Linjär algebra F1, Q1, W1. Kurslitteratur
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra för F1, Q1, W1 Kurslitteratur Höstterminen 2006 Eriksson Lind Persson Tengstrand, Algebra för universitet och högskolor, Band II (Linjär Algebra),
Självkoll: Ser du att de två uttrycken är ekvivalenta?
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen
3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:
Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg
Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1
ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 9 6, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN
9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016
SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen
1. Beräkna determinanten
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
SF1624 Algebra och geometri
SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del
n = v 1 v 2 = (4, 4, 2). 4 ( 1) + 4 ( 1) 2 ( 1) + d = 0 d = t = 4 + 2s 5 t = 6 + 4s 1 + t = 4 s
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 7-8-4 kl 4 9 a) Triangelns sidor ges av vektorerna v OP OP (,, ) och v OP 3 OP (,, 4) som även blir riktningsvektorer till planet En normal
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 8 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN6 alt.
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3
2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.
LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym
Lösningar till MVE021 Linjär algebra för I
Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 april 5 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 8- Hjälpmedel : Inga hjälpmedel
3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t
SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
Bestäm den matris B som löser ekvationen = 1 2
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.
Preliminärt lösningsförslag
Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel
LINJÄR ALGEBRA II LEKTION 3
LINJÄR ALGEBRA II LEKTION 3 JOHAN ASPLUND INNEHÅLL Basbyten Kolonnrum, radrum och nollrum 3 Linjära avbildningar från R n till R m 4 Uppgifter 3 46:3 3 47:a 3 48:3a 4 48:a 4 49:9 4 40:7a,b BASBYTEN Om
1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen.
Akademin för teknik och miljö Rolf Källström telefonkontakt med examinator via tentamensvakten Matematiktentamen Ingenjörer, lärare, m fl Linjär algebra maa. 5 6 Skrivtid: 9... Inga hjälpmedel. Lösningarna
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 3 6 kl. 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Tony Stillfjord,
Del 1: Godkäntdelen. TMV142 Linjär algebra Z
MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV42 Linjär algebra Z Tentan
2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder
kvivalenta. Ange rangen för A samt en bas för kolonnrummet för A. och U =
MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: 9-- kl 8 Tentamen Telefonvakt: Aron Lagerberg tel 76-786 Linjär Algebra Z (tmv4) Skriv tentamenskod tydligt på samtliga
x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3)
TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 74-4 kurser:: Linjär Algebra ma4a Matematik för ingenjörer maa 8 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta
Del 1: Godkäntdelen. TMV142 Linjär algebra Z
MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 130313 kl 0830 1230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV142 Linjär algebra Z Tentan
Matematik med datalogi, mfl. Linjär algebra ma014a ATM-Matematik Mikael Forsberg
ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Linjär algebra ma4a Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje n uppgift
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
SF1624 Algebra och geometri
Föreläsning 8 Institutionen för matematik KTH 16 november 2016 Matriser och linjära avbildningar Dagens ämnen (kap 3.3 och 3.4): Exempel på linjära avbildningar Nollrum och Bildrum Dimensionssatsen / Rangsatsen
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA1 Grundläggande vektoralgebra, TEN5 alt.
DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013
TILLÄMPAD LINJÄR ALGEBRA, DN123 1 DN123 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 213 Skrivtid: 8-13 Tillåtna hjälpmedel: inga Examinator: Anna-Karin Tornberg Betygsgränser: Betyg A B C D E
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
A = x
Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,
Del 1: Godkäntdelen. TMV141 Linjär algebra E
Var god vänd! MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV4 Linjär algebra
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.
SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B
Linjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom
3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6
TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 5 4 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet
1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:
6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp
6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet
Tentamen i Linjär algebra (TATA31/TEN1) , 8 13.
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN (p) (p) (p) Tentamen i Linjär algebra (TATA/TEN) 8 4, 8. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng