VSMA01 - Mekanik ERIK SERRANO
|
|
- Carina Larsson
- för 8 år sedan
- Visningar:
Transkript
1 VSMA01 - Mekanik ERIK SERRANO
2 Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter Imorgon Övning: Räkneuppgifter
3 VSMA01 Mekanik Syfte Ge baskunskaper i mekanik, strukturmekanik och konstruktion för att förstå samspelet mellan form och belastningar Förmedla begrepp så att dessa kan utnyttjas som verktyg i en designprocess och bidra till en produkts uttryck
4 VSMA01 Mekanik Mål Kunskap och förståelse kunna förklara grundläggande begrepp inom mekanik och konstruktion kunna analysera och beskriva utifrån de grundläggande begreppen befintliga produkter insatta i sitt sammanhang kunna beskriva hur val av form påverkar kraftspel och deformationer
5 VSMA01 Mekanik Mål Färdighet och förmåga kunna tillämpa kunskapen som aktivt hjälpmedel vid utformning av produkter åskådliggöra värden och förklara mekaniska principer utifrån skisser och friläggning samt hur dessa värden kommuniceras en användare av produkten Värderingsförmåga och förhållningssätt Redovisa i bilder, text och muntlig presentation produktens mekaniska egenskaper och gestaltningsvärden kopplat till dessa
6 VSMA01 Mekanik - Kursinnehåll Grundläggande begrepp, storheter och samband som används för att beskriva material, krafter och deformationer Ur verkliga situationer avgränsas problem och väljs lämpliga modeller för överslagsmässig analys av problem Modelltänkande Begrepp och storheter: massa, tyngdpunkt, styvhet, dimensioner, kraft, moment och jämvikt
7 Kursprogram Litteratur Schema Föreläsning 5-6 Föreläsning 1-4
8 Introduktion till statik Översikt (Kap 1) Kraftbegreppet Newtons lagar Punktkrafter Krafters storlek och riktning Jämviktsbegreppet Partikel Moment Stel kropp
9 Statik Klassisk mekanik delas normalt sett upp i statik och dynamik (vi behandlar ej dynamik i den här kursen) Statik behandlar föremål i vila under inverkan av krafter Dynamik behandlar krafter på föremål i rörelse Inom statiken är jämvikt ett centralt begrepp = alla krafter som verkar på ett föremål balanserar varandra Förutom tyngdkraft behandlar statiken endast yttre krafter. Alla föremål betraktas som stela (kan inte deformeras) Inre krafter behandlas i hållfasthetslära (och i andra delen av den här kursen)
10 Kap 1 Frågor att besvara Hur beräknas tyngdkraft? Genom vilken punkt verkar den? Kan du förklara Newtons lagar? Vad menas med idealiseringen punktkraft? Vilka villkor gäller för jämvikt av två parallella krafter? vid krafter i godtycklig riktning? Vad menas med begreppet partikel? När används momentjämvikt? Vad menas med begreppet stel kropp?
11 Kraftbegreppet Vad är en kraft? Den vanligaste kraften vi upplever är tyngdkraften Alla föremål med en massa, påverkas av tyngdkraften och ett föremål med massan m påverkas av en kraft mg Tyngdkraften verkar nedåt mot jordytan och verkar genom föremålets masscentrum. Vid jordytan är tyngdaccelerationen, g, 9,81 m/s 2 Enheten för kraft är Newton (N), vanliga beteckningar är F, R En massa på 1 kg påverkas alltså av en tyngdkraft, F F = m g = 1 9,81 = 9,81 (N)
12
13 Att mäta krafter Känd massa Obelastad fjäder Okänd kraft
14 Kontaktkrafter
15 Newtons lagar Lag I: Tröghetslagen En kropp förblir i vila eller i likformig rörelse så länge summan av alla yttre krafter som verkar på kroppen är noll F = 0 Lag II: Samband mellan kraft och acceleration F = m a Lag III: Lagen om aktion och reaktion (verkan och motverkan) Två föremål påverkar alltid varandra med lika stora men motriktade krafter (krafter uppträder alltså alltid parvis)
16 mg Lag I: Tröghetslagen N mg Lag II: Kraft och acceleration Om vi inte håller emot kommer kulan att falla fritt (accelererad rörelse) mg N Lag III: Verkan och motverkan Kulan påverkas av en kontaktkraft N (uppåt) och handen känner av en lika stor kraft (nedåt) N
17 Idealiseringar Punktkrafter Verklig tryckfördelning Idealiserad punktkraft
18 Idealiseringar Punktkrafter
19 Kraft Storlek och riktning
20 Kraft Storlek och riktning F θ Vinkel mot x-axeln ger riktning x
21 Kraft Storlek och riktning y F y F x F x Kraften beskrivs genom komposantuppdelning
22 Komposantuppdelning - Exempel F y F 5 3 F x 4 F x F = 4 5 F y F = 3 5 F x = 4 5 F F y = 3 5 F
23 Komposantuppdelning - Exempel F y F θ F x F x = F cos θ F y = F sin θ
24 Trigonometriska funktioner Rätvinklig triangel b (katet) θ a (katet) I förhållande till vinkeln θ har vi närliggande katet (a) och motstående katet (b)
25 Trigonometriska funktioner Rätvinklig triangel b (katet) θ a (katet) sin θ = motstående katet hypotenusa = b c cos θ = närliggande katet hypotenusa = a c tan θ = motstående katet närliggande katet = b a
26 Jämvikt Fall 1: Två parallella krafter För att en kropp ska befinna sig i vila eller förflytta sig med konstant hastighet krävs att alla krafter är i balans med varandra (Newtons 1:a lag) Detta kallas för jämvikt. (Kapitel 4) Exempel på ett fall med två parallella krafter
27 Tyngdkraften mg nedåt Krafternas verkningslinje Den uppåtriktade kontaktkraften N verkar vinkelrätt mot underlaget och kallas därför för normalkraft N
28 Sammanfattning - Två parallella krafter Vid endast två krafter gäller vid kraftjämvikt att: krafterna är lika stora och motriktade krafterna verkar längs samma verkningslinje det räcker med en balansekvation t.ex.: F y = 0
29 Om vi utmanar jämvikten
30 Jämvikt Fall 2: Krafter i godtycklig riktning
31 Jämvikt - Kraftkomposanter
32 Jämvikt - Komposantuppdelning Efter komposantuppdelning kan vi betrakta två riktningar (x och y) oberoende av varandra I vardera riktningen kan vi nu ställa upp jämvikt enligt tidigare beskrivning för parallella krafter Jämviktsvillkoren blir då (två st alltså!): F x = 0 F y = 0
33 y x S cos 64 N cos 31 = 0 F x = 0 S sin 64 + N sin 31 mg = 0 F y = 0
34 Sammanfattning - Krafter i godtycklig riktning Där fler än två krafter finns och krafterna inte är parallella och krafternas verkningslinjer korsar varandra i en och samma punkt: krävs två jämviktsekvationer: kraftjämvikt i x-riktning, F x = 0 kraftjämvikt i y-riktning, F y = 0
35 Modelltänkande Inom mekaniken tränar vi bl a modelltänkande Modell = Någon form av förenklad beskrivning av den fysiska verkligheten. Modellen beskrivs med en uppsättning regler/förutsättningar Beroende på val av modell (och modellens komplexitet) beskrivs det verkliga skeendet mer eller mindre noggrant Exempel på en sådan modell är partikelbegreppet inom mekaniken
36 Partikel Ett föremål vars storlek saknar betydelse för det vi vill beskriva kan hanteras som en partikel (=ett föremål som är punktformat)
37 Moment och momentjämvikt Normalkraft som verkar handflatorna Friktionskraft som verkar på fotsulorna Tyngdkraft Normalkraft som verkar på fotsulorna
38 Friläggning F x = 0 F N B = 0 F y = 0 N A mg = 0 N A = mg F = N B (m är känt) (F och N B är okända) Vi behöver ytterligare samband!
39 Krafter vars verkningslinjer INTE skär varandra i en punkt Krafterna ger upphov till en vridande verkan
40 Moment En kraft som ger en vridande verkan kring en viss punkt sägs utöva ett moment kring denna punkt Moment beräknas genom att multiplicera kraften med det vinkelräta avståndet från kraftens verkningslinje till punkten. Moment återkommer i detalj i Kapitel 3
41 Stjälpande moment (medurs) = mg d Mothållande moment (moturs) = N B h
42 Friläggning Kraft och momentjämvikt F x = 0 F N B = 0 F y = 0 N A mg = 0 mg d N B h = 0 N A = mg (m är känt) 1 F = N B (F kan beräknas) 3 N B = mg d h (N B kan beräknas) 2
43 Sammanfattning Där fler än två krafter finns och där krafterna inte verkar längs samma verkningslinje och verkningslinjerna inte korsar varandra i en och samma punkt krävs tre jämviktsekvationer: kraftjämvikt i x-riktning, F x = 0 kraftjämvikt i y-riktning, F y = 0 momentjämvikt, M = 0
44 Stel kropp För att personens kropp ska kunna hålla emot de krafter som uppstår krävs att den är stel och odeformerba, (armarna får inte vika sig) Vid belastning bibehålls kroppens form utan att den deformeras. Där momentjämvikt ingår måste vi därför använda oss av en stelkroppsmodell. Med stel kropp menas en odeformerbar kropp vars storlek eller utbredning är av betydelse. Inom mekaniken betraktas alla kroppar som stela vilket är en god approximation i många tekniska sammanhang. Deformerbara kroppar behandlas i hållfasthetsläran (och senare i kursen).
45
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
KRAFTER. Peter Gustavsson Per-Erik Austrell
KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion
KRAFTER. Peter Gustavsson Per-Erik Austrell
KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion
Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen
Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande
Grundläggande om krafter och kraftmoment
Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan
Biomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Biomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
Introduktion till Biomekanik - Statik VT 2006
http://apachepersonal.miun.se/~petcar/biomekanikintro.htm Innehåll Terminologi inom biomekanik. Skelettets, musklernas, senors och ligamentens funktion och uppbyggnad. Statik, kinematik och kinetik. Idrotts-
Introduktion till Biomekanik - Statik VT 2006
Pass 2 Aktions- reaktionskraft Nu är det dags att presentera grundstenarna inom Mekanik Newtons lagar: 1. Tröghetslagen: En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av
Krafter och moment. mm F G (1.1)
1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en
university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Välkommen! Till Kursen MEKANIK MSGB21. Föreläsningar & kursansvar:
Välkommen! Till Kursen MEKANIK MSGB21 Föreläsningar & kursansvar: Hans Johansson 21F226 Övningar: Lennart Berglund 21F227 Jens Ekengren 21D215 Anders Gåård 21F229 Sekreterare: Marika Johansson 21F218 Ur
Uppgifter till KRAFTER
Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9
Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
Introduktion till Biomekanik - Statik VT 2006
Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)
Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
Övningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
Uppgifter till KRAFTER. Peter Gustavsson Per-Erik Austrell
Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter... 3 2 Krafter... 5 A-uppgifter... 5 B-uppgifter... 5 3 Moment... 7 A-uppgifter... 7 B-uppgifter...
Mer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
mm F G (1.1) F mg (1.2) P (1.3)
Sid 1-1 1 1.1 Krafter och moment Inledning örståelsen för hur olika tper av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom bggnadskonsten. Gravitationskraften
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Till Kursen MEKANIK MSGB21
Välkommen! Till Kursen MEKANIK MSGB21 Kursansvar: Hans Johansson 21F226 Föreläsningar: Hans Johansson & Anders Gåård Övningar: Anders Gåård 21F229 Mikael Åsberg 21D209 Hans Johansson 21F226 Sekreterare:
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling
Introduktion till Biomekanik - Statik VT 2006
Kurskompendie, 150kr Kurshemsida (internt på miun) http://apachepersonal.miun.se/~petcar/biomekanikintro.htm (externt) www.miun.se/personal/peter.carlsson/biomekanikintro.htm Föreläsare Marie Lund, marie.lund@miun.se
= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet
Tillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Introduktion till Biomekanik, Dynamik - kinetik VT 2006
Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,
Basåret, Fysik 2 25 februari 2014 Lars Bergström
Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
2.2 Tvådimensionella jämviktsproblem Ledningar
2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Sfären påverkas av tre krafter. Enligt resonemanget om trekraftsystem i kapitel 2.2(a) måste krafternas verkningslinjer då skära varandra i en punkt,
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt
Fy 1-mekaniken i sammandrag version 0.3 [140820] Christian Karlsson En del saker nedan tas inte upp i Fy 1-kursen, men är bra att med sig inför Fy 2. Dessa saker är markerade med [NYTT!]. 1 Rörelsebeskrivning
Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.
Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan
LÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Tentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Biomekanik, 5 poäng Moment
(kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en
Lösningar Kap 11 Kraft och rörelse
Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.
Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden
LEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
TFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med
Kursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
II. Partikelkinetik {RK 5,6,7}
II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Inre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016
Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, 4.1-3 version 2016 Kraftmoment (vridmoment) En krafts förmåga att vrida ett föremål runt en vridningsaxel kallas för kraftmoment (vridmoment). Moment betecknas
KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
1 KOMIHÅG 3: --------------------------------- Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av
" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Mekanik FK2002m. Kraft och rörelse I
Mekanik FK2002m Föreläsning 4 Kraft och rörelse I 2013-09-05 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 4 Introduktion Hastighet Langt under 3x10 8 Nara : 3x10 8 Storlek 10 9 Langt over : 10 9 Klassisk
Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
Lösningar Heureka 2 Kapitel 2 Kraftmoment och jämvikt
Lösningar Heureka Kapitel Kraftmoment och jämvikt Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel.1) Vi väljer en vridningsaxel vid brädans kontaktpunkt med ställningen till vänster,
3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk
3 Fackverk 3.1 Inledning En struktur som består av ett antal stänger eller balkar och som kopplats ihop med mer eller mindre ledade knutpunkter kallas för fackverk. Exempel på fackverkskonstruktioner är
mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel
Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan
Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,
Joakim Holmberg, lektor, Mekanik och hållfasthetslära (IEI), examinator för TMMI03 (mekanik) och TMMI39 (mekanik f.k.).
LINKÖPINGS TEKNISKA HÖGSKOLA Tekniska fakultetskansliet FÖRSLAG TILL PROGRAMNÄMND INFÖR ÅR 2018 NÄMND/NÄMNDER: MD Förslagsställare (Namn, funktion, Inst/Enhet) Joakim Holmberg, lektor, Mekanik och hållfasthetslära
Introduktion till Biomekanik - Statik VT 2006
1 Jämviktsberäkning metodik (repetition) Ex. 1. Frilägg den del du vill beräkna krafterna på. 2. Rita ut alla krafter (med lämpliga benämningar) 3. Rita ut alla avstånd du vet, gör gärna om till meter.
Tillbakablick: Övning 1.2. Fordonsdynamik med reglering. Stillastående bil. Sidkrafter: Frågeställning 1. R r. R g
Tillbakablick: Övning 1.2 Fordonsdynamik med reglering I c-uppgiften lutar vägen 0.5 grader och räknar man ut krafterna som verkar på bilen när bilen står still så ser det ut så här: Jan Åslund jaasl@isy.liu.se
Introhäfte Fysik II. för. Teknisk bastermin ht 2018
Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål
Karl Björk. Elementär. Mekanik. Tredje upplagan
Karl Björk Elementär Mekanik Tredje upplagan Förord till första upplagan Föreliggande bok i elementär mekanik är tänkt som stöd i undervisningen i huvudmomentet mekanik i blockämnet teknologi. Det förutsätts
Tentamensskrivning i Mekanik - Dynamik, för M.
Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna
Föreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)
Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan
" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något.
Björne Torstenson KRAFTER sid 1 Centralt innehåll: Hävarmar och utväxling i verktyg och redskap, till exempel i saxar, spett, block och taljor. (9FVL2) Krafter, rörelser och rörelseförändringar i vardagliga
Undervisningsformer:
Undervisningsformer: Schemalagd tid: 12h/vecka Föreläsningar 25%, pass om 45min Introducerande karaktär, ej heltäckande, kursboken definierar innehållet via läsanvisningarna i kursprogrammet. Seminarier
Kollisioner, impuls, rörelsemängd kapitel 8
Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!
NEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Ord att kunna förklara
Rörelse och kraft Ord att kunna förklara Rörelse Hastighet Acceleration Retardation Fritt fall Kraft Gravitationskraft (=tyngdkraft) Friktionskraft Centripetalkraft Tyngdpunkt Stödyta Motkraft Rörelse
Mekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Tentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen
010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:
Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen
010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med
Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler.
Inlämningsuppgift 1 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Oftast använder vi apparater och motorer till att omvandla
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Repetitionsuppgifter i Fysik 1
Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften
τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.
Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1
Newtons lagar 2 1 2 NEWTONS LAGAR 2.1 Inledning Ordet kinetik används ofta för att beteckna läranom kroppars rörelse under inflytande av krafter. Med dynamik betcknar vi ett vidare område där även kinematiken
Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,