Laboration 1 Mekanik baskurs
|
|
- Susanne Nyberg
- för 6 år sedan
- Visningar:
Transkript
1 Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala
2 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen är en acceleration som varierar något kring jorden, beroende på avstånd från jordens centrum mm. Ofta antas jordens acceleration vara konstant då parametrarna som påverkar den har så pass låg inverkan att de kan försummas. Vid jordytan i Sverige är jordacceleration ca 9, 81 m/s2. Hur mäter man jordaccerelationen? I denna rapport behandlas några metoder för att bestämma den. Teorin Genom att använda sig av en vagn som får åka så friktionsfritt som möjligt på ett lutande plan, kan jordacceleration bestämmas. Detta om vinkeln mellan planet och ett horisontellt plan är känd och man kan bestämma vagnens hastighet vid givna tidpunkter. Eftersom vi känner till att: dv = a, där dv är derivatan av hastigheten med avseende på tiden dt dt Alltså om vi har en graf där y axeln beskriver hastigheten och x axeln beskriver tiden ska vi kunna använda oss av: V 2 V 1 t2 t = a där V Index och t Index anger olika punkter under aktuellt intervall 1 För att beräkna vinkeln mellan en horisontell yta och de lutande planet ger en vinkelmätare mindre noggrannhet än att använda sig av de trigonometriska funktionerna, därför beräknas enklast vinkeln ( θ ) genom: Längden på planet höjden θ = arcsin( ) På ovanstående sätt kan alltså vagnens acceleration bestämmas och genom att betrakta nedanstående fig. 1 kan man konstatera att de relativt lätt går att lösa ut jordacceleration (g)
3 Fig.1 Visar de accelerationer som kommer påverka en vagn som får rulla ner för ett lutande plan. Kommentar kring fig.1: Triangeln med hypotenusan L är likformig med Triangeln med hypotenusan g. Eftersom linjerna L och f är parallella och N. I figuren har vi försummat friktion av olika former. I självaverket kommer vagnen som accelererar mot jorden påverka jorden med lika stor kraft som jorden påverkar vagnen enl. Newtons tredje lag: Lagen om verkan och motverkan: "Om en kropp A påverkar en annan kropp B med en viss kraft, påverkar B kroppen A med en lika stor kraft i motsatt riktning." 1 Dock så är massan på vagnen är försumbar i jämförelse med massan på jorden därför bortser vi ifrån den lilla acceleration som skapas i detta fall. Efter att vi har räknat ut vagnens acceleration i riktning med planet kan vi räkna fram tyngdacceleration genom: g = a sin θ där g är tyngdaccelerationen och a är vagnens acceleration 1
4 Metod och materiel: Figur 2: Bild av experimentuppställning Utrustning: Vagn, lutande rullbana, lägessensor, handdator och måttband Metod: En rullbana placerades med ena änden upphöjd så att det bildades en vinkel mellan horisontalplanet och rullbanan (enligt fig. 1 el. fig. 2). högst upp på rullbanan placerades en lägessensorn för att sedan kopplas till en handdator. Vinkeln mellan bordet ( horisontalplanet ) och rullbanan mätts (se avsnitt Teori för matematiska formler). Därefter lät vi vagnen rulla ner för plantet el. det s.k planet medans en handdator mätte hastigheten som funktion av tiden på handdatorn. Med hjälp av Delta Tool (Differensmätning) på handdatorn mättes Δ v och Δ t vars kvot ger lutning på kurvan ( Δv Δt = a ) som motsvarar vagnen acceleration. Experimentet upprepades fyra ytligare gånger.
5 Resultat: vagnens acceleration räknades fram fem gånger vilket gav följande fem värden: m försök nr. jordacceleration s 2 1 9,00 2 8,46 3 8,34 4 8,58 5 8,30 medel 8,54 standardavvikelse 0,25 Tabell 1. innehåller beräknad data över jordaccelerationen vid olika försök. Standard avvikelsen beräknades med följande formel: σ = (gexp g medel) n 2 Där σ är det standardavvikelsen och g exp experimentförsök nr. värden framgår i tabell 1. Standardvärdet beskriver alltså hur stor spridningen är mellan resultaten om den är låg är resultatet mer tillförlitliga. Disskusion Värdena skiljer sig en hel del ifrån de faktiska värdet på 9,81 m/s 2. Troligen eftersom olika former av friktion som luftmotstånd och friktion emellan kontaktytorna och kullager utgör en stor del motverkande kraft och ger då ett lägre värde på jordacceleration. Dock kan det även vara så att den "horisontella" ytan som planets ena ände var placerad på inte var exakt horisontell i
6 och med att en så låg vinkel användes i testet och då orsakar att ett litet fel i vinkeln användes och vid beräkning av jordaccelerationen ger relativt stort fel. Standardavvikelse var relativt låg även om samtliga värden var påtagligt lägre än det faktiska värdet. Vilket tyder på att mätningar var relativt bra men någon faktor/parameter påverkar resultatet till att bli något mindre. För att få fram ett säkrare värde bör alltså ytligare fem försök genomföras där man försäkrar sig om att underlaget är horisontellt med större noggrannhet. Alternativt kan man öka vinkeln på planet då kommer vinkeln öka och därmed har felet mindre inverkan på det slutliga värdet, och ger ett mer exakt värde. Man bör även lägga på något föremål med hög densitet på vagnen för att minska luftmotståndets inverkan på resultatet. Felkällor Friktion både i form av luftmotstånd och i hjulen utgör en motverkande acceleration mot vagnens rörelseriktning och är en trolig orsak till det låga värdet Onoggrannhet vid beräkning av vinkeln Ingen mätning har gjorts för att fastställa att underlaget som planet stod på är helt vertikalt (eller vinkelrät med riktningen på jordaccelerationen) vilket de antagligen inte är Planet som vagnen rullar ner för antogs vara helt rakt men troligen böjs den av sin egen vikt. Vilket medför att accelerationen inte är helt linjär
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med
Laboration 4 Mekanik baskurs
Laboration 4 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 015 03 7 Introduktion Denna laboration handlar om två specialfall av kollisioner, inelastiska och elastiska kollisioner. Vi ska
INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 2. Friktionskraft och snörkraft
INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 2 Krafter och Newtons lagar Friktionskraft och snörkraft Uppsala 2015-09-29 Instruktioner Om laborationen: Innan ni lämnar labbet: Arbeta
Övningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
Mekanik Laboration 2 (MB2)
Institutionen för fysik Ingvar Albinsson/Carlo Ruberto Naturvetenskapligt basår, NBAF00 Laborationen genomförs i grupper om två-tre personer och består av fem olika försök som genomförs i valfri ordning
Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00
Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta
Ordinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
MEKANIKENS GYLLENE REGEL
MEKANIKENS GYLLENE REGEL Inledning Det finns olika sätt att förflytta föremål och om du ska flytta en låda försöker du säkert komma på det enklaste sättet, det som är minst jobbigt för dig. Newton funderade
Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai
Projekt: Filmat tornfall med modell av tornet Benjamin Tayehanpour, Adrian Kuryatko Mihai Abstrakt Detta dokument avhandlar vad som händer när ett torn faller. Såväl elastiska som stela kroppar behandlas.
Biomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet
INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 1. Bestäm tyngdaccelerationen på tre olika sätt
INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 1 Läge, hastighet och acceleration Bestäm tyngdaccelerationen på tre olika sätt Uppsala 2015-09-29 Instruktioner Om laborationen: Innan
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter
LÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel
Laborationsrapport Ballistisk pendel Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A 22 april 2017 1 1 Introduktion Den här laborationen genomförs för att undersöka en pils hastighet innan den
Lösningar Kap 11 Kraft och rörelse
Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella
Mekanik FK2002m. Kraft och rörelse I
Mekanik FK2002m Föreläsning 4 Kraft och rörelse I 2013-09-05 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 4 Introduktion Hastighet Langt under 3x10 8 Nara : 3x10 8 Storlek 10 9 Langt over : 10 9 Klassisk
Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu
Kulstötning Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu Abstract I detta projekt undersöktes en kulstötning med starthöjden meter och en längd på,5 meter med hjälp av matematiska modeller.
Introduktion till Biomekanik - Statik VT 2006
Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)
Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan
Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,
e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
Introduktion till Biomekanik, Dynamik - kinetik VT 2006
Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,
Ballistisk pendel laboration Mekanik II
Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den
Prov Fysik 1 Värme, kraft och rörelse
Prov Fysik 1 Värme, kraft och rörelse För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1:
Ord att kunna förklara
Rörelse och kraft Ord att kunna förklara Rörelse Hastighet Acceleration Retardation Fritt fall Kraft Gravitationskraft (=tyngdkraft) Friktionskraft Centripetalkraft Tyngdpunkt Stödyta Motkraft Rörelse
Kapitel 4 Arbete, energi och effekt
Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Krafter och Newtons lagar
Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda
TENTAMEN. Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet. Lärare: Joakim Lundin
Umeå Universitet TENTAMEN Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-28 Tid: 09.00-15.00 Kod:... Grupp:... Betyg Poäng:...
Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt
Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer
SVÄNGNINGSTIDEN FÖR EN PENDEL
Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt
AKTIVITETER VID POWERPARK/HÄRMÄ
AKTIVITETER VID POWERPARK/HÄRMÄ Acceleration Mega Drop Fritt fall Piovra Typhoon Svängningsrörelse Planetrörelse La Paloma Cirkelrörelse FRITT FALL (Mega Drop) Gradskiva och måttband Räknemaskin Tidtagarur
BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar
BASFYSIK BFN 120 Galileo Galilei, italiensk naturforskare (1564 1642) Laborationsuppgifter med läge, hastighet och acceleration Namn Epost Lärares kommentar Institutionen för teknik och naturvetenskap
Repetitionsuppgifter i Fysik 1
Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Experimentella metoder 2013, Räkneövning 3
Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.
Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något.
Björne Torstenson KRAFTER sid 1 Centralt innehåll: Hävarmar och utväxling i verktyg och redskap, till exempel i saxar, spett, block och taljor. (9FVL2) Krafter, rörelser och rörelseförändringar i vardagliga
Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen
Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande
" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Kraft, tryck och rörelse
Kraft, tryck och rörelse Kraft En kraft kan ändra form, fart och rörelseriktning hos föremål. Kraft mäts i Newton, N. Enheten är uppkallad efter fysikern Isaac Newton som levde på 1600- talet. 1 N är ungefär
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Hur kan en fallskärm flyga?
Umeå Universitet Institutionen för fysik Hur kan en fallskärm flyga? Vardagsmysterier förklarade 5p Sommarkurs 2006 Elin Bergström Inledning En fallskärm finns till för att rädda livet på den som kastar
Rotationsrörelse laboration Mekanik II
Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,
3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.
RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-01-08, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: Eaminator: Peter Schmidt Tentajour: Carl-Gustaf ronsson, Tel. 28 17 83, (Besöker salarna första gången ca 10.00
Tentamen i Mekanik Statik
Tentamen i Mekanik Statik TMME63 2015-08-29, kl 14.00-18.00 Tentamenskod: TEN1 Tentasal: TER1, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 15.00) Kursadministratör:
Tentamensskrivning i Mekanik - Dynamik, för M.
Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Introduktion till Biomekanik - Statik VT 2006
Pass 2 Aktions- reaktionskraft Nu är det dags att presentera grundstenarna inom Mekanik Newtons lagar: 1. Tröghetslagen: En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av
Polarisation laboration Vågor och optik
Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen
MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:
Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord
MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.
UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics
university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Upp gifter. 1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa.
1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa. 2. En såpbubbla dalar genom luften med den konstanta hastigheten 1,1 cm/s. Vilken kraft känner den av från luften
Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Labbrapport svängande skivor
Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan
I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.
I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är
Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Laboration: Krafter och Newtons lagar
Institutionen för fysik och astronomi Laboration: Krafter och Newtons lagar Instruktionen består av två delar: 1. Laborationsinstruktion (detta häfte) 2. Svarshäfte Laborationsinstruktionen, detta häfte,
Mekanik Laboration 3 (MB3)
Institutionen för fysik Ingvar Albinsson/Carlo Ruberto Naturvetenskapligt basår, NBAF00 Laborationen genomförs i grupper om två-tre personer och består av fem olika försök som genomförs i valfri ordning
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-08-21, kl 8.00-12.00 Tentamenskod: TEN1 Tentasal: TER1 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna första gången ca 10.00 )
Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)
Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling
exempel på krafter i idealiserade situationer, som till exempel i Slänggungan / Kättingflygaren eller Himmelskibet.
Figur 1: Slänggungan på Liseberg Med Newton bland gungor och karuseller Ann-Marie.Pendrill@fysik.lu.se I nöjesparkens åkattraktioner är det din egen kropp som upplever krafterna i Newtons lagar, när den
Laboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver
Final i Wallenbergs Fysikpris
Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens
SKOLORNAS FYSIKTÄVLING
SVENSKA DAGBLADET SKOLORNAS FYSKTÄVLNG FNALTÄVLNG 7 maj 1994 SVENSKA FYSKERSAMFUNDET Lösningsförslag 1. Huden håller sig lämpligt sval i bastun genom att man svettas. Från huden har man en avdunstning
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Tentamen i Mekanik för D, TFYA93/TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Magnus Johansson Tentamen i Mekanik för D, TFYA93/TFYY68 Måndag 019-01-14 kl. 14.00-19.00 Tillåtna Hjälpmedel: Physics Handbook
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
Laboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp:
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren och Staffan Yngve ID-Kod: Program: TENTAMEN 14-01-11 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 14.00-19.00, Polacksbacken,
II. Partikelkinetik {RK 5,6,7}
II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.
Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..
Krafter och Newtons lagar
Mekanik I, Laboration 2 Krafter och Newtons lagar Fysiska föremål, kroppar, kan påverka varandra ömsesidigt, de kan växelverka. För att förklara hur denna växelverkan går till har fysikvetenskapen uppfunnit
Polarisation. Abbas Jafari Q2-A. Personnummer: april Laborationsrapport
Polarisation Laborationsrapport Abbas Jafari Q2-A Personnummer: 950102-9392 22 april 2017 1 Innehåll 1 Introduktion 2 2 Teori 2 2.1 Malus lag............................. 3 2.2 Brewstervinklen..........................
OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.
Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare
Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016
Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, 4.1-3 version 2016 Kraftmoment (vridmoment) En krafts förmåga att vrida ett föremål runt en vridningsaxel kallas för kraftmoment (vridmoment). Moment betecknas
Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19
Karlstads universitet matematik Peter Mogensen Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19 Tillåtna hjälpmedel: Godkänd räknare, bifogad formelsamling. Jourtelefon: