Ordinarie tentamen i Mekanik 2 (FFM521)
|
|
- Sandra Andreasson
- för 6 år sedan
- Visningar:
Transkript
1 Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund, tel , besöker tentamenssalarna c:a kl och Rättningsprinciper: Alla svar skall motiveras, införda storheter förklaras liksom val av metoder. Lösningarna förväntas vara välstrukturerade och begripligt presenterade. Erhållna svar ska, om möjligt, analyseras m.a.p. dimension och rimlighet. Skriv och rita tydligt! Varje uppgift ges max 3 poäng enligt följande principer: För 3 poäng krävs en helt korrekt lösning. Mindre fel ger 1/2 eller 1 poäng avdrag. Allvarliga fel (t ex dimensionsfel eller andra orimliga resultat) ger 2 poängs avdrag. Allvarliga principiella fel ger 0 poäng på uppgiften. Ofullständiga, men för övrigt korrekta, lösningar kan ge max 1 poäng. Detsamma gäller lösningsförslag vars presentation är omöjlig att följa. Betygsgrunder: Varje uppgift ger maximalt 3 poäng, vilket innebär totalt maximalt 15 poäng på denna deltentamen. Halva delpoäng kan utdelas. För att bli godkänd krävs minst fem poäng poäng ger betyg 5, 9-12 poäng ger betyg 4, och 5-8 poäng ger betyg 3. OBS: I alla uppgifter får svaret ges i termer av de storheter som ges i uppgiftstexten och figuren, samt tyngdaccelerationen g.
2 1. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen gör så att den till slut rullar utan att glida. Ett klot har tröghetsmoment 2 5 mr2. (a) Beräkna sluthastigheten av klotet. (Ni behöver inte räkna ut s.)
3 2. Anordningen, som består av hjulen, axeln och de två kulorna, rullar i riktningen ŷ utan att glida. Kulorna som har massa m och försumbar radie är monterade på masslösa stänger på ett radius d från axelns mittpunkt. Axeln som kopplar de två hjulen har en längd 3a och axelns riktning definierar ˆx. Hjulen har en massa M, radie R. Stängerna är monterade med jämna mellanrum mellan varandra och vardera hjul. Rikningen ẑ pekar rakt upp. (a) Beräkna krafterna under höger hjul som en funktion av θ, vinkeln mellan stängerna och vertikalaxeln om den rullar med konstant hastighet v i ŷ riktningen. Beteckna n som normalkraften i riktning up, och f som kraften i riktning +ŷ. Tröghetsmomentet av en massiv cylinder med massa M och radius R längs symmetriaxeln är 1 2 MR2.
4 3. En fjäder med fjäderkonstant k är kopplad till en massa m i ena ändan och till en stötdämpare med dämpningskonstant c i den andra. Andra ändan av stötdämparen är kopplad till en punkt x B som rör sig fram och tillbaka med amplitud b : x B = b cos(ωt). Efter en tid rör sig massan m fram och tillbaka med en amplitud a. Massan glider friktionsfritt på underlaget. (a) Beräkna a/b.
5 4. En plan och tunn skiva ligger i x y planet och har ett tröghetsmoment I zz = I G = md 2 runt masscentrum, där D har enheten längd och kallas tröghetsradie ( radius of gyration ). Skivans densitet är konstant, ρ. Skivan roterar runt en (fixerad) axel i z - led som är ett avstånd L från masscentrum. Luftens viskositet ger friktion som, på ett litet ytelement da vid läget r, är proportionell mot arean och ytans hastighet genom luften. d F = λ v( r) da. Luftens densitet i förhållande till skivans kan försummas. (a) Bestäm diffrentialekvation för θ.
6 5. Två homogena cylindrar A och B har massa m och radie r och rullar utan att glida på en horisontell yta. Cylindrarna är parallela och kopplade med två fjädrar enligt figuren, som har fjäderkonstant k. Vid tid t = 0 har fjädrarna sina naturliga längder, cylinder B är i vila och A rullar mot B med hastighet v 0. Cylindern har tröghetsmomentet 1 2 mr2 runt symmetriaxeln. (a) Med valfri metod, räkna fram hastigheterna för A och B som en funktion av tid. Lycka till!
7 Formelblad Behålla detta formelblad för andra delen av tentan R Ω (θ) ij = δ i,j cos(θ) + (1 cos(θ))ω i Ω j sin(θ) ɛ ijk Ω k T r(rˆω)(θ) = cos(θ) Σ ɛ kij (RˆΩ(θ)) ij = 2 sin(θ)ˆω k I ij = r m r (δ ij ( r) 2 r i r j ) (I tot ) ij = (I cm ) ij + M (R 2 δ ij R i R j ) ( MK 7/6 ) v A = v B + ω r + v rel (MK 7/6) a A = a B + Ω r A/B + 2Ω v rel + Ω (Ω r A/B ) + a rel (MK 7/7,7/7a) da dt 0 = d dt L q L q = A t + Ω A p = L q H(p, q) = p q L H p H q = q = ṗ k ɛ ijk ɛ mnk = δ i,m δ j,n δ i,n δ j,m (A B) (C D) = (A C) (B D ) (A C)(B C) cos (a + b) = cos a cos b sin a sin b; sin (a + b) = cos a sin b + sin a cos b sin a A = sin b B = sin c C där A, B och C är längden av sidorna mittemot vinkeln a, b och c. cos θ = θ θ4 + O(θ 6 ); sin θ = θ 1 6 θ3 + O(θ 5 ). A B = A B sin θ AB A B = A B cos θab.
Ordinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 2 juni 2017 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Godkänd minikräknare och Matte Beta Examinator: Stellan Östlund Jour: Stellan
Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)
Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 7 januari 2012 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera
Tentamen i Mekanik II
Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd
Tentamensskrivning i Mekanik - Dynamik, för M.
Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna
Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Stelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Tentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:
LÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Tentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520)
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Kapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.
Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 16 augusti 2005, 14.00-18.00, V-huset Examinator: Martin Cederwall Jour: NN, tel. 772???? Tillåtna hjälpmedel: Physics
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander TENTAMEN 11-06-03 MEKANIK II 1FA102 SKRIVTID: 5 timmar,
MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.
UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics
Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297
Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda
YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp:
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren och Staffan Yngve ID-Kod: Program: TENTAMEN 14-01-11 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 14.00-19.00, Polacksbacken,
ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.
Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar
Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)
Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten 1 Torsdagen den 14 januari 2016, klockan 14 19 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 013-281157 Examinator
Mekanik F, del 2 (FFM521)
Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella
Tentamen i Mekanik Statik
Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:
(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
Tillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
LEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.
Tentamen i Mekanik 1 (FFM515/FFM516)
Tentamen i Mekanik 1 (FFM515/FFM516 Tid och plats Onsdagen den 17 augusti 2016 med start 0830 i Maskin salar Hjälpmedel Inga Examinator Ulf Gran Jour Stellan Östlund tel 076761 90 06 besöker tentamenssalarna
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen i Mekanik - partikeldynamik
Tentamen i Meani - partieldynami TMME08 011-08-17, l 8.00-1.00 Tentamensod: TEN1 Tentasal: TER4 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 8 7 43, (Besöer salarna ca 9.00 och 11.00) Kursadministratör:
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-08-21, kl 8.00-12.00 Tentamenskod: TEN1 Tentasal: TER1 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna första gången ca 10.00 )
Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Kursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.
FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-01-08, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: Eaminator: Peter Schmidt Tentajour: Carl-Gustaf ronsson, Tel. 28 17 83, (Besöker salarna första gången ca 10.00
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 21 maj 2012 klockan 14.00-18.00 i M. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsstrategi: Använd arbete-energi principen
Tentamen i Mekanik Statik
Tentamen i Mekanik Statik TMME63 2015-08-29, kl 14.00-18.00 Tentamenskod: TEN1 Tentasal: TER1, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 15.00) Kursadministratör:
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA4 Flervariabelanalys E2 21-8-1 kl. 8. 12. Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Anders Martinsson, telefon: 7 88 4 Hjälpmedel: bifogat
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-05-31, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: G32, G33, G34, G35, G36 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna första
Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
SG1140, Mekanik del II, för P2 och CL3MAFY. Omtentamen
Otentaen 110610 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda
Arbete och effekt vid rotation
ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del 1 Statik och partikeldynamik TMME27 2016-10-24, kl 14.00-19.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE, TERF Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27
Tentamen. TSFS 02 Fordonsdynamik med reglering 1 november, 2013, kl. 8 12
Tentamen TSFS 02 Fordonsdynamik med reglering 1 november, 2013, kl. 8 12 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Tentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Möjliga lösningar till tentamen , TFYY97
Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN 10-08-28 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 09.00-14.00 Hjälpmedel:
Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00
Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta
Tentamen i SG1140 Mekanik II för M, I. Problemtentamen
2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Övningar för finalister i Wallenbergs fysikpris
Övningar för finalister i Wallenbergs fysikpris 0 mars 05 Läsa tegelstensböcker i all ära, men inlärning sker som mest effektivt genom att själv öva på att lösa problem. Du kanske har upplevt under gymnasiet
LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Maskinelement 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 4P09M KMASK4h TentamensKod: Tentamensdatum: 3 mars 207 Tid: 09.00 3.00 Hjälpmedel: Formelsamling för maskinelement, Tore
9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
Biomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Hjälpmedel: Examinator: Jourhavande lärare: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Physics Handbook, Beta, Lexikon, typgodkänd miniräknare
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
1.1 Stokes sats. Bevis. Ramgard, s.70
1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014
SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETF85) Tid och plats: 25 oktober, 2017, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 222 40 89
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svar på de sex deluppgifterna: SFF SFS.
SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B
GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,
Karta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår