SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

Storlek: px
Starta visningen från sidan:

Download "SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014"

Transkript

1 SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan. De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betgen. Betgsgränserna vid tentamen kommer att ges av Betg A B C D E F Total poäng varav från del C 6 3 För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tdligt beskrivs i ord eller smboler och att resonemangen är väl motiverade och tdligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng. Var god vänd!

2 2 SF1626 Flervariabelanals Tentamen DEL A 1. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) 2. Funktionen f (,) är definierad i hela -planet. a) Bestäm alla stationära punkter till f. (2 p) b) Avgör de stationära punkternas karaktär. (2 p) 3. Beräkna kurvintegralen ( 2)d + 2 d γ där γ är kvartscirkelbågen uppritad i figuren. (4 p) (1, 1) γ (2, )

3 SF1626 Flervariabelanals Tentamen DEL B 4. Funktionen f (, ) är en kontinuerligt deriverbar funktion definierad i en omgivning av punkten (1,) i R 2. Om denna funktion vet vi att riktningsderivatan i (1,) längs -aeln i positiv riktning är lika med 5, riktningsderivatan i (1,) längs linjen 1 i riktning mot positiva är lika med 2. a) Bestäm gradienten till f (,) i punkten (1,). (2 p) b) Bestäm riktningsderivatan av f (,) i punkten (1,) i riktning mot punkten (3, 1). (2 p) 5. Betrakta funktionen f (,) 3 4 i området som bestäms av olikheten a) Förklara hur man vet att f antar ett största och ett minsta värde i området. (1 p) b) Bestäm det största och det minsta värdet för f i området. (3 p) 6. Ett torn K har formen av en massiv stmpad kon med cirkulärt tvärsnitt och mått enligt figuren. Av smmetriskäl ligger masscentrum för K på z- aeln. Beräkna z-koordinaten för masscentrum som ges av m z 1 z dddz vol(k) K där vol(k) är volmen av K. (4 p) H z R 2R Var god vänd!

4 4 SF1626 Flervariabelanals Tentamen DEL C 7. Beräkna integralen E f (,) dd där E är kvadraten {(,): 1, 1} och f (,) det kortaste avståndet från punkten (,) till randen av E. (4 p) 8. a) Formulera divergenssatsen (Gauss sats). Ange alla förutsättningar. (1 p) b) Bestäm den slutna kompakta C 1 -ta S som gör att flödesintegralen F N ds blir så stor som möjligt, då S F ( 3, 3z 2,z 3 2 z) och normalvektorn N är utåtpekande. Beräkna även flödesintegralen för detta fall. (3 p) 9. En kropp består av den del av ett klot som befinner sig mellan två parallella plan och har måtten a 3 ±,1 cm, b 4 ±,1 cm, h 1 ±,1 cm, där a och b är radien av respektive cirkulära ändcirkelskiva och h är avståndet mellan planen. Använd linjarisering (linjär approimation) för att bestämma klotets radie med felgränser. (4 p) b a h

5 SF1626 Flervariabelanals Lösningsförslag till tentamen DEL A 1. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när 2 och termen ln(2 ) är definierad när 2 >. Tillsammans avgränsar dessa villkor definitionsmängden till f Området 2 Området 2 > Definitionsmängden till f Eftersom inte hela randen tillhör definitionsmängden så är den inte en kompakt mängd.

6 2 SF1626 Flervariabelanals Lösningsförslag till tentamen Funktionen f (,) är definierad i hela -planet. a) Bestäm alla stationära punkter till f. (2 p) b) Avgör de stationära punkternas karaktär. (2 p) Lösning. a) De stationära punkterna är de punkter (,) där f (,). Vi ska alltså hitta de punkter där f 2 2, och f Den andra av dessa ekvationer säger att 1, och därefter ger den första att 1. Den enda stationära punkten är alltså (1,1). b) I den stationära punkten är förstaderivatorna lika med noll, så Talorutvecklingen till andra ordningen i punkten är f (1 + h 1,1 + h 2 ) f (1,1) ( 2 f 2 2 (1,1)h f (1,1)h 1h ) f 2 (1,1)h För att avgöra punktens karaktär studerar vi den kvadratiska formen Q(h 1,h 2 ) 2 f 2 (1,1)h f (1,1)h 1h f 2 (1,1)h2 2. Vi har 2 f 2 2, 2 f 2, 2 f 2, i alla punkter, så speciellt i punkten (1,1). Den kvadratiska formen Q blir alltså vilket vi kvadratkompletterar till Q(h 1,h 2 ) 2h 2 1 4h 1 h 2 +, Q(h 1,h 2 ) 2(h 1 h 2 ) 2 2h 2 2. Detta är en indefinit kvadratisk form, så punkten (1,1) är en sadelpunkt.

7 SF1626 Flervariabelanals Lösningsförslag till tentamen Beräkna kurvintegralen ( 2)d + 2 d γ där γ är kvartscirkelbågen uppritad i figuren. Lösning. En parametrisering av γ är 1 + cost, (4 p) sint, där t går från till π/2. Med denna parametrisering är och vi får att γ d d dt sint dt, dt ( 2)d + 2 d π/2 π/2 π/2 [ 2t + sint d d dt cost dt, dt (1, 1) 2sint ( sint)dt + (1 + cost) 2 cost dt ( 2sin 2 t + cost + 2cos 2 t + cos 3 t ) dt ( 2 + cost + cost ( 1 sin 2 t )) dt ] π/2 {substituera u sint} 1 ( π u 2 ) du π π/2 + cost ( 1 sin 2 t ) dt γ (2, ) π

8 4 SF1626 Flervariabelanals Lösningsförslag till tentamen DEL B 4. Funktionen f (, ) är en kontinuerligt deriverbar funktion definierad i en omgivning av punkten (1,) i R 2. Om denna funktion vet vi att riktningsderivatan i (1,) längs -aeln i positiv riktning är lika med 5, riktningsderivatan i (1,) längs linjen 1 i riktning mot positiva är lika med 2. a) Bestäm gradienten till f (,) i punkten (1,). (2 p) b) Bestäm riktningsderivatan av f (,) i punkten (1,) i riktning mot punkten (3, 1). (2 p) Lösning. a) Vi söker gradienten f (1,) och ansätter denna vektor till f (1,) (a,b). En enhetsvektor längs -aeln i positiv riktning är v 1 (1,), och riktningsderivatan i den riktningen är alltså f (1,) v 1 (a,b) (1,) a 5. En enhetsvektor längs linjen 1 i positiv riktning är v (1,1). Riktningsderivatan i den riktningen är 1 f (1,) v 2 (a,b) (1,1) 1 (a + b) Vi har alltså ekvationerna a 5, a + b 2, vilket ger lösningen f (1,) (5, 7). b) En enhetsvektor som pekar från punkten (1,) mot punkten (3, 1) är v 1 5 (2, 1). Riktningsderivatan i den riktningen är 1 f (,) v (5, 7) (2, 1)

9 SF1626 Flervariabelanals Lösningsförslag till tentamen Betrakta funktionen f (,) 3 4 i området som bestäms av olikheten a) Förklara hur man vet att f antar ett största och ett minsta värde i området. (1 p) b) Bestäm det största och det minsta värdet för f i området. (3 p) Lösning. (a) Funktionen f antar ett största och ett minsta värde eftersom den är kontinuerlig och definierad på ett kompakt område. Se Sats 4, sidan 41, i kursboken. (b) De sökta värdena antas i stationära punkter eller randpunkter eftersom singulära punkter saknas. Området är en sluten ellipsskiva med centrum i origo. Vi har att f (3, 4) vilket inte är lika med nollvektorn, så det finns inte någon stationär punkt där största eller minsta värde kan antas. För att studera funktionens beteende på randen g(,) använder vi Lagranges metod. Tänkbara största och minsta värden fås då f λ g för något tal λ. Eftersom g (2,8) ger detta ekvationerna 3 2λ, 4 8λ. Om λ har detta ingen lösning, så vi kan dela med λ och får λ 2 eller 3. Insatt i g(,) ger detta eller 2 1 vilket ger ±1. Tillsammans får vi två tänkbara punkter där ma och min kan antas, (,) ( 3,1), (,) (3, 1). Eftersom detta är de enda kandidaterna måste ma resp. min antas i dessa punkter. Vi har f ( 3,1) 13 vilket alltså är det minsta värdet funktionen antar, och f (3, 1) 13 vilket är det största.

10 6 SF1626 Flervariabelanals Lösningsförslag till tentamen Ett torn K har formen av en massiv stmpad kon med cirkulärt tvärsnitt och mått enligt figuren. Av smmetriskäl ligger masscentrum för K på z- aeln. Beräkna z-koordinaten för masscentrum som ges av m z 1 z dddz vol(k) K där vol(k) är volmen av K. (4 p) H z R 2R Lösning. I clindriska koordinater beskrivs tornet K av z H, r R(2 z/h), θ 2π. Volmen av K ges av vol(k) r dr dθ dz K ( H ( R(2 z/h) ( H ( R 2 R H 1 ( 2 R2 2 z H ( 4 4z (4H 2H2 H ) ) r dr dz dθ ) ) 2 dz dθ ) H + z2 H 2 ) + H3 3H 2 dθ ) dz dθ 2π R2 2 7H 3 7πR2 H. 3 Masscentrums z-koordinat är alltså m z 1 vol(k) 3 7πR 2 H 3 7πR 2 H zdddz K ( H ( R(2 z/h) ( H z 1 2 R2 ( 2 z H ) ) zr dr dz dθ ) ) 2 dz dθ

11 SF1626 Flervariabelanals Lösningsförslag till tentamen πR 2 H 3 7πR 2 H ( R 2 H ) ) (4z 4z2 2 H + z3 H 2 dz dθ R 2 ) (2H 2 4H3 2 3H + H4 4H 2 dθ 3 7πR 2 H 2π R2 2 11H H 28.

12 8 SF1626 Flervariabelanals Lösningsförslag till tentamen DEL C 7. Beräkna integralen E f (,) dd där E är kvadraten {(,): 1, 1} och f (,) det kortaste avståndet från punkten (,) till randen av E. (4 p) Lösning. Diagonalerna delar upp kvadraten i fra områden där punkten (, ) har kortast avstånd till respektive randlinje: E 2 E 1 I området E 1 har (, ) kortast avstånd till linjen. I området E 3 har (, ) kortast avstånd till linjen 1. E 3 E 4 I området E 3 har (, ) kortast avstånd till linjen 1. I området E 4 har (, ) kortast avstånd till linjen. På grund av smmetrin är f (,) dd 4 E f (,) dd 4 E 1 dd. E 1 Området E 1 kan beskrivas genom 1/2, 1,

13 SF1626 Flervariabelanals Lösningsförslag till tentamen och vi får att 4 dd 4 E 1 4 1/2 ( 1 1/2 (1 2)d [ ( ) 12 ) d d ] 1/2 1 6.

14 1 SF1626 Flervariabelanals Lösningsförslag till tentamen a) Formulera divergenssatsen (Gauss sats). Ange alla förutsättningar. (1 p) b) Bestäm den slutna kompakta C 1 -ta S som gör att flödesintegralen blir så stor som möjligt, då S F N ds F ( 3, 3z 2,z 3 2 z) och normalvektorn N är utåtpekande. Beräkna även flödesintegralen för detta fall. (3 p) Lösning. a) Se läroboken sats 1 på sidan 368. b) Vi har att divergensen av vektorfältet är divf ( 3 ) + ( 3z 2 ) + ( z 3 2 z ) z z (1 2 2 z 2 ). Eftersom vektorfältets komponenter är polnom och vi antar att tan S är en kompakt sluten C 1 -ta så ger Gauss sats att S F N ds K divf dddz K 3(1 2 2 z 2 ) dddz där K är den kropp som tan S innesluter. Trippelintegralen blir så stor som möjligt när K är det område där integranden är icke-negativ, z z 2 1, alltså K är klotet med radie 1 och medelpunkt i origo. I detta fall är tan S enhetssfären med medelpunkt i origo. Vi beräknar trippelintegralen genom att gå över till rmdpolära koordinater, S F N ds K ( π ( 1 ( π 3(1 2 2 z 2 )dddz ) ) 3(1 r 2 )r 2 sinθ dr dθ dφ ( [ r 3 ] 1 ) ) 3sinθ 3 r5 dθ dφ 5

15 SF1626 Flervariabelanals Lösningsförslag till tentamen ( π ) ( dφ 2 5 sinθ dθ dφ ] ) π dφ [ cosθ 8π 5.

16 12 SF1626 Flervariabelanals Lösningsförslag till tentamen En kropp består av den del av ett klot som befinner sig mellan två parallella plan och har måtten a 3 ±,1 cm, b 4 ±,1 cm, h 1 ±,1 cm, där a och b är radien av respektive cirkulära ändcirkelskiva och h är avståndet mellan planen. Använd linjarisering (linjär approimation) för att bestämma klotets radie med felgränser. (4 p) b a h Lösning. Vi börjar med att bestämma R som en funktion av a, b, och h. Pthagoras sats ger att a h 1 R h 2 b R så vi har sambanden R 2 a 2 + h 2 1 Genom att eliminera h 1 får vi R 2 a 2 + h 2 1, R 2 b 2 + h 2 2, h h 1 h 2. R 2 a 2 + (h + h 2 ) 2, R 2 b 2 + h 2 2. R 2 b 2 + h 2 2 Om vi löser ut h 2 ur den andra av dessa ekvationer, h 2 R 2 b 2, och sätter in i den första får vi R 2 a 2 + ( h + R 2 b ) 2 2 a 2 + h 2 + 2h R 2 b 2 + R 2 b 2. Vi skriver om detta till och kvadrererar för att få eller 2h R 2 b 2 b 2 a 2 h 2 4h 2 (R 2 b 2 ) (b 2 a 2 h 2 ) 2 R 2 b 2 + (b2 a 2 h 2 ) 2 4h 2.

17 SF1626 Flervariabelanals Lösningsförslag till tentamen Detta samband ger R R(a,b,h). När vi deriverar med avseende på a, b, och h, får vi eller 2RR a 2(b2 a 2 h 2 ) 4h 2 ( 2a) a(b2 a 2 h 2 ) h 2, 2RR b 2b + 2(b2 a 2 h 2 ) 4h 2 2b 2b + b(b2 a 2 h 2 ) h 2, 2RR h 2(b2 a 2 h 2 ) 4h 2 ( 2h) 2 (b2 a 2 h 2 ) 2 4h 3 b2 a 2 h 2 h (b2 a 2 h 2 ) 2 2h 3, R a a(b2 a 2 h 2 ) 2Rh 2, R b b R + b(b2 a 2 h 2 ) 2Rh 2, R h b2 a 2 h 2 2Rh (b2 a 2 h 2 ) 2 4Rh 3, När a 3, b 4 och h 1 så är b 2 a 2 h 2 6 och R , Linjariseringsformeln ger att R(3 + a,4 + b,1 + h) R a R b , R h R(3,4,1) + R a(3,4,1) a + R b (3,4,1) b + R h (3,4,1) h + restterm a Om vi försummer resttermen får vi att 24 b h + restterm. 1 R(3 + a,4 + b,1 + h) R(3,4,1) a + b h a + b h

18 14 SF1626 Flervariabelanals Lösningsförslag till tentamen och eftersom a, 1, b, 1 och h, 1 ger detta feluppskattningen Vi kommer fram till att R 5 ±,8. R(3 + a,4 + b,1 + h) R(3,4,1) ,1 +, ,1,74.

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Integranden blir. Flödet ges alltså av = 3

Integranden blir. Flödet ges alltså av = 3 Lektion 7, Flervariabelanals den 23 februari 2 6.4.2 Använd Gauss sats för att beräkna flödet av ut ur sfären med ekvationen där a >. Flödet ut ur sfären ges av F e e + 2 e e + e 2 + 2 + 2 a 2 F d, som

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

SF1626 Flervariabelanalys Tentamen 14 mars 2011,

SF1626 Flervariabelanalys Tentamen 14 mars 2011, SF1626 Flervariabelanalys Tentamen 14 mars 2011, 08.00-13.00 Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet

Läs mer

= 0 genom att införa de nya

= 0 genom att införa de nya UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15 TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation. SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs. MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom fx, y) lnx 1) + lny) xy x. a) Förklara

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tentamen i Flervariabelanalys F/TM, MVE5 kl.. 8.. jälmedel: Inga, ej räknedosa. Telefon: Lennart Falk, 77 56 För godkänt krävs minst oäng. Betyg : -5 oäng, betyg : 6-7 oäng, betyg 5: 8 oäng eller mera.

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Anals B för KB/TB (TATA9/TEN1 214-3-21 kl 14 19 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betgsgränser:

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl Institutionen för Matematik TH irsti Mattila Tentamensskrivning, ompletteringskurs i matematik 5B4 Onsdagen den 8 december, kl 8.-. Preliminära betgsgränser för, 4 och 5 är 8, 4 och 54 poäng. Inga hjälpmedel

Läs mer

Tentamen i TATA43 Flervariabelanalys

Tentamen i TATA43 Flervariabelanalys Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy,

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy, LUNS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING FLERIMENSIONELL ANALYS --3 kl. 8 3 INGA HJÄLPMEEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna dubbelintegralen y ddy, där är

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Tentamen MVE035 Flervariabelanalys F/TM

Tentamen MVE035 Flervariabelanalys F/TM entamen MVE35 Flervariabelanals F/M 17-8- kl. 14. 18. Examinator: Peter Hegart, Matematiska vetenskaper, Chalmers elefonvakt: Peter Hegart, telefon: 766377873 alt. Ankn. 535, Anna Rehammar Hjälpmedel:

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen. TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

15 Multipelintegraler, sfäriska koordinater, volymberäkningar

15 Multipelintegraler, sfäriska koordinater, volymberäkningar Nr 5, 9 april -5, Amelia 5 Multipelintegraler, sfäriska koordinater, volmberäkningar 5. Multipelintegraler et finns många tillämpningar där fler än tre variabler är aktuella. I statistik kan vi vilja undersöka

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z

Läs mer

Föreläsningsanteckningar i flervariabelanalys

Föreläsningsanteckningar i flervariabelanalys Egmont Porten Mittuniversitet Föreläsningsanteckningar i flervariabelanals 1 Differentialkalkl 1.1 Punkter i R 2, R 3 R 2 : (, ) = P 2 ( 2, 2 ) Enligt Ptagoras lag är (2 1 ) 2 + ( 1 = 2 ) 2 1 ( 1, 1 )

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13 LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA4 Flervariabelanalys E2 21-8-1 kl. 8. 12. Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Anders Martinsson, telefon: 7 88 4 Hjälpmedel: bifogat

Läs mer

Tentamen TMA043 Flervariabelanalys E2

Tentamen TMA043 Flervariabelanalys E2 Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Lösningsförslag till TMA043/MVE085

Lösningsförslag till TMA043/MVE085 MAEMAIK Hjälpmedel: bifogat formelblad, ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola atum: 988 kl. 4. - 8. entamen elefonvakt: avid Heintz elefon: 76-786 Lösningsförslag till MA4/MVE85

Läs mer

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016 SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE , kl

Tentamen i Flervariabelanalys F/TM, MVE , kl Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y,

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y, Tentamensskrivning i flervariabelanals F (MVE05) och reell matematisk anals F, delb (TMA975), 006-0-0, kl 80-0 i V Telefon: Johan Jansson, tel 076-7860 Låt f (, = 6 a) Ange en ekvation för tangentplanet

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer