av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
|
|
- Leif Ström
- för 6 år sedan
- Visningar:
Transkript
1 Lösningsskisser till TATA69 Flervariabelanalys Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna och Q (,, (h, k, l 4h + l + 1kl 4h + (l + 3k 18k Q (,6, 18 (h, k, l 4h + 36k + l + 1kl 4h + (l + 3k + 18k Man visar med standardresonemang att den första är indefinit (tex är Q (,, (1,, 4 + > och Q (,, (, 1, < och den andra är positivt definit (det är uppenbart att Q (,6, 18 överallt, och enda sättet att få Q (,6, 18 (h, k, l är att ta h, l + 3k och k, dvs (h, k, l (,, Av detta följer (enligt sats att (,, inte är någon lokal extrempunkt, medan (, 6, 18 är en lokal minimipunkt Svar: f har lokalt minimum i (, 6, 18 (a Använd kedjeregeln Svar: z x(x, y g (x + e y x och z y(x, y g (x + e y e y (Observera att g är en funktion av en variabel, så dess derivata ska betecknas med g, precis som i envariabelanalyskursen et är inte korrekt att skriva partiella derivator g x och g y här e partiella derivatorna står bara på z(x, y, som ju är en funktion av två variabler; z(x, y är sammansättningen av envariabelfunktionen g(t och flervariabelfunktionen t h(x, y x + e y (b Med det föreslagna variabelbytet u x, v x + e y fås z x z u + x z v och z y e y z v, vilket insatt i PE:n ger e y (z u + x z v x(e y z v e y, alltså z u e y v u Integration med avseende på u ger z(u, v uv 1 3 u3 +g(v, där g är en godtycklig C 1 -funktion av en variabel, alltså z(x, y x(x + e y 1 3 x3 + g(x + e y 3 x3 + xe y + g(x + e y Bivillkoret ger till sist z(, y g(e y y, alltså g(t ln(t, för t > (Att funktionen g(t bara blir bestämd för t > har ingen betydelse för det slutliga svaret, eftersom enbart positiva värden t e y + x > stoppas in i g(t där Svar: z(x, y 3 x3 + xe y + ln(e y + x Anmärkning: Notera att liksom för linjära ordinära differentialekvationer (som ni har sett i envariabelanalysen så har lösningen strukturen
2 partikulärlösning plus homogenlösning : z p (x, y 3 x3 + xe y ger högerledet e y vid insättning i PE:n, medan z h (x, y g(x + e y löser den motsvarande homogena ekvationen e y z x(x, y x z y(x, y (alltså med noll i högerledet Om man vill kontrollera att det verkligen är så (genom insättning så behöver man resultatet från (a-uppgiften Prova det, så märker du varför det är viktigt att det verkligen står samma uttryck g (x + e y på båda ställena, och inte g x resp g y Annars kommer ju inte de två termerna att ta ut varandra! 3 Man kan tex göra det linjära variabelbytet ( x y u ( 1 + v ( 1 4, dvs x u + 4v, y u v etta ger en ny triangel E i uv-planet, med hörn i (,, (1, och (, 1 eterminanten d(x,y det ( 1 4 d(u,v 1 9 ger dxdy 9 dudv, och alltså 1 9 dxdy 81 + (x y E 1 Svar: Se ovan 1 v 1 + v dv dudv 81 + (9v [ arctan v 1 ln(1 + v ( 1 v du dv 1 + v 1 ( π 9 4 ln v u ] 1 (Notera att svaret måste bli positivt eftersom vi integrerar den överallt positiva funktionen f(x, y 1/(81 + (x y, och man kan se att det blev positivt eftersom π 3,14 > 3 och ln,69 < ln e 1, så att π/4 > 3/4 > 1/ > (ln / 4 Som bekant är gradienten f(x, y ( 3x 6xy 1x y 4 +1 vinkelrät mot nivåkurvan genom punkten (x, y I en punkt (x, y (a, 1 på linjen y 1 måste därmed gradienten vara riktad i y-led för att nivåkurvan ska tangera linjen, alltså f(a, 1 ( 3a 6a 1a + 1 (, 1 vilket är fallet om och endast om 3a 6a etta ger a eller a, så nivåkurvorna genom (, 1 och (, 1 tangerar linjen Insättning av dessa punkter i formeln för f(x, y ger f(, 1 1 och f(, 1 3 Svar: Nivåkurvorna f(x, y 1 och f(x, y 3 (Om man ska vara noggrann bör man även påpeka att f(, 1 och f(, 1 inte är nollvektorn, eftersom 1a +1 då a eller a etta villkor garanterar ju, via implicita funktionssatsen, att nivåmängden verkligen är en kurva i närheten av respektive punkt
3 Villkoren x och x + 3 y representerar en sektor i rummet som avgränsas av planen x och x + 3 y Vi kan illustrera detta i en figur sedd uppifrån (där uppåt betyder positiv z-led: y x/ 3 y x x et grå området indikerar x, det blå området indikerar x+ 3 y (alltså y x/ 3, och deras skärning ger sektorn nere till vänster mellan de tjocka svarta strecken (som bildar vinklarna respektive 3π/ med den positiva x-axeln Olikheten z x + y är området ovanför konen z x + y, vilket enklast illustreras i en figur sedd från sidan en verkliga mängden i tre dimensioner fås genom att rotera figurens grå område runt z-axeln Vinkeln mellan positiva z-axeln och det tjocka strecket är π/4 z z ρ x + y xy-planet ρ Olikheten x + y + z 4, slutligen, definierar såklart ett klot med centrum i origo och radie Vid övergång till rymdpolära koordinater fås därmed ett nytt område E 3
4 som ges av r, ϕ 3π/ och θ π/4, alltså x dxdydz (r cos ϕ sin θ r sin θ drdθdϕ E ( ( π/4 3π/ r 4 dr sin 3 θ dθ cos ϕ dϕ ( ( [ ] r [ 3 ( π/4 r 4 dr cos θ + cos3 θ 3 ( 3 6 (1 cos θ sin θ dθ ] π/4 ( 1 π [ ϕ ( 3π/ ] sin ϕ 3π/ cos ϕ Svar: (8 (8π (Svaret måste uppenbart bli positivt eftersom vi integrerar f(x, y, z x, och man kan se att det blev positivt eftersom 1,41 < 1,6 8/, eller, om man föredrar det, 8 64 > En alternativ lösning är att använda stavar i z-led, med konen som botten och sfären som lock, alltså ( x 4 (x +y dxdydz x x dz dxdy, +y z där projektionen av på xy-planet är { (x, y R : x, x + 3 y, { (x, y R : x, x + 3 y, x + y } dϕ x + y 4 (x + y } et blir alltså en cirkelsektor i xy-planet, med radien Observera att detta inte är lika med klotets radie ; se figuren, där cirkelradien ifråga representeras av det blå strecket: 4
5 z z ρ xy-planet ρ ρ + z 4 ubbelintegralen över beräknas enklast i planpolära koordinater, med nytt område F {(ρ, ϕ R : ρ, ϕ 3π/}: x ( 4 (x + y x + y dxdy (ρ cos ϕ ( 4 ρ ρ ρ dρdϕ F ( ( 3π/ cos ϕ dϕ ρ 3 4 ρ dρ ρ ρ ρ 4 dρ Med t 4 ρ (och dt ρ dρ får man att den första ρ-integralen är 1 ρ 4 ρ ( ρdρ 1 (4 t t dt 1 [ ] 4 t 3/ 4 4 3/ t/ / 4 3 (43/ 3/ 1 (4/ / 64 8, 1 från vilket man subtraherar [ 1 ρ ] 1 1, och multiplicerar med ϕ-integralen som blir π precis som i den första lösningen Ännu en alternativ lösning är att använda skivor (tvärsnitt för fixt z å måste man dela upp kroppen i två delar, en undre del med z, och en övre del med z (se figuren ovan, men å andra sidan blir primitivuträkningarna ganska bekväma För varje fixt z är tvärsnittet z en cirkelsektor med samma vinklar ϕ 3π/ som ovan, men med en z-beroende radie; i den undre delen har vi ρ z (radien ges av konen z ρ och i den övre delen är ρ 4 z (radien ges av sfären ρ + z 4 etta ger (om
6 E z betecknar den just beskrivna z-beroende rektangeln i ρϕ-planet som motsvarar cirkelsektorn z i xy-planet att x dxdydz ( z ( z ( 3π/ + z z ( 3π/ ( π 3 + z x dxdy dz (ρ cos ϕ ρ dρdϕ dz E z ( z cos ϕ dϕ ( 3π/ cos ϕ dϕ cos ϕ dϕ ( z [ ] z vilket (såklart ger samma svar ännu en gång ρ 3 dρ dz ( 4 z z 4 4 dz + + [ ρ 3 dρ z dz 16z 8z3 3 + z (4 z dz 4 6 Sätt F (x, y x y x y å är F y(x, y x y ln x 1 Eftersom F är av klass C 1, F (1, 3 3 och F y(1, 3 1 så är villkoren för implicita funktionssatsen uppfyllda, och den säger då att ekvationen F (x, y 3 implicit definierar en C 1 -funktion y(x nära (x, y (1, 3, vilket skulle visas Notera att y(1 3 per definition Implicit derivering av sambandet x y(x x y(x 3 ger x y(x( y (x ln x + y(x/x 1 y (x (När man deriverar x y(x får man tänka på att det betyder e y(x ln x Om vi löser ut y (x får vi y (x 1 y(xxy(x 1 x y(x ln x 1 Här är uttrycket i högerledet av klass C 1 (nära x 1, eftersom vi vet att y(x är det, och eftersom vi inte dividerar med noll Alltså är även vänsterledet y (x av klass C 1, vilket betyder att funktionen y(x själv är av klass C Vi övergår nu till att skriva y och y istället för y(x och y (x, för ], 6
7 enkelhets skull erivering av y (x y ln x 1 1 yx y 1 ger y (x y ln x 1 + y ( x y (y ln x + y/x ln x + x y /x y x y 1 y x y 1 (y ln x + (y 1/x Om vi här löser ut y (x får vi igen ett uttryck av klass C 1, vilket betyder att y(x själv är av klass C 3 (Man kan fortsätta på liknande sätt och visa att y(x rentav är av klass C Insättning av x 1 och y(1 3 i formeln för y (x ger y (1 ( /( 1, och insättning av detta i formeln för y (x ger y ( , alltså y (1 1 Taylors formel ger nu utvecklingen av ordning kring x 1: y(1 + h y(1 + y (1h + y (1h! 3 + h + h + O(h 3 + O(h 3 Svar: Se ovan En arbetsbesparande variant är att notera att ekvationen x y x + y 3 är ekvivalent med y ln x ln(x + y 3 (åtminstone för x > och x + y 3 >, och det kan vi ju anta gäller eftersom vi bara är intresserade av vad som händer nära (x, y (1, 3 Man kan alltså skriva ekvationen som G(x, y, där G(x, y y ln x ln(x + y 3 Sedan beräknar man G y(x, y ln x (x + y 3 1, kontrollerar att G y(1, 3, deriverar implicit, osv, precis som ovan, fast med mycket enklare uträkningar! 7
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
= 0 genom att införa de nya
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.
(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik
KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära
LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13
LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4
SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand
Inlämningsuppgift nr 2, lösningar
UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
Övningar till Matematisk analys III Erik Svensson
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik -8-8 Övningar till Matematisk analys III Erik Svensson. För varje gränsvärde nedan bestäm gränsvärdet eller visa att gränsvärdet inte existerar.
Lösning till kontrollskrivning 1A
KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
6. Räkna ut integralen. z dx dy dz,
Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga
SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017
Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
7 Extremvärden med bivillkor, obegränsade områden
Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,
Tentamen i Flervariabelanalys F/TM, MVE035
Tentamen i Flervariabelanalys F/TM, MVE5 kl.. 8.. jälmedel: Inga, ej räknedosa. Telefon: Lennart Falk, 77 56 För godkänt krävs minst oäng. Betyg : -5 oäng, betyg : 6-7 oäng, betyg 5: 8 oäng eller mera.
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Tentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 8 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB TATA9/TEN1 14--1 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm
Övningstenta: Lösningsförslag
Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt
TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy,
LUNS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING FLERIMENSIONELL ANALYS --3 kl. 8 3 INGA HJÄLPMEEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna dubbelintegralen y ddy, där är
TATA44 Lösningar 26/10/2012.
TATA44 Lösningar 6/1/1. 1. Lösning 1: Konen z x + y skär sfären x + y + (z 5 5 då 4z + (z 5 5 och enkla räkningar ger nu z z some ger z(z och vi ser att z eller z. Observera att punkter på sfären med z
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A
Institutionen för matematik SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A 1. Betrakta funktionen fx, y = x + y och området D som ges av olikheterna x, y och x + y 1.
Tentamen i Flervariabelanalys F/TM, MVE , kl
Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg
TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med
TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den
Flervariabelanalys E2, Vecka 3 Ht08
Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor
TMV036 Analys och linjär algebra K Kf Bt, del C
MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.
Kontrollskrivning 1A
Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen
SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det
SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Tentamen i Flervariabelanalys, MVE , π, kl
Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg
Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t
TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater.
TATA Lösningar /8/.. Låt vara den del av x + y + z innanför cylindern x + y. Inför cylinderkoordinater. Parametrisera med ortsvektorn r(ρ, φ (ρ cos φ, ρ sin φ, ρ som man kan skriva som r(ρ, φ ρ ˆρ + ρ
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Anals B för KB/TB (TATA9/TEN1 214-3-21 kl 14 19 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betgsgränser:
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:
Typuppgifter på TATA69
Typuppgifter på TATA69 Hittar du något fel kan du maila mig på joali916@student.liu.se. Använd dropboxlänken för att vara säker på att du har senaste versionen av detta dokument: https://www.dropbox.com/s/8bopyyzupwzd5p/tata69%0tentahj%c3%a4lp.pdf
För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg
ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN) 23-8-22 kl 4 9 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.
Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
TMV036 Analys och Linjär Algebra K Kf Bt, del C
MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv
Lösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen
10.1 Linjära första ordningens differentialekvationer
10.1 Linjära första ordningens differentialekvationer Här ska vi studera linjära första ordningens differentialekvationer som kan skrivas y (x) + g(x)y(x) = h(x) Om g(x) har en primitiv funktion G(x) så
11 Dubbelintegraler: itererad integration och variabelsubstitution
Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75
4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
Figur 1: Postföretagets rektangulära låda, definitioner.
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.
Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.
SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:
Kap Dubbelintegraler.
Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA4 Flervariabelanalys E2 21-8-1 kl. 8. 12. Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Anders Martinsson, telefon: 7 88 4 Hjälpmedel: bifogat
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska