Lösningar till Matematisk analys
|
|
- Viktoria Danielsson
- för 5 år sedan
- Visningar:
Transkript
1 Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära ändyta. Dvs rotationskroppens area är π fx + f x dx + π f π x + 9x 4 / dx + π π + 9x 4 /] + π π + π π Låt D beteckna det givna området x + y, x + y. Området D är kompakt både slutet och begränsat och eftersom den givna funktionen f är kontinuerlig överallt har f ett största och ett minsta värde i D, och vi bestämmer nu dessa värden. i Stationära punkter till f i D o det inre av D. Derivering ger f x, y x och f x, y y. Dvs f x, y, f x, y har enda lösningen x, y,, en punkt som ligger i D o. Punkten, är således den enda stationära punkten till f i D o. Tillhörande funktionsvärde är f,. ii f:s beteende på randen till D. Sambandet x +y ger x ± y eller y ± x. Eftersom fx, y x x +y väljer vi att använda att y ± x. Roten i sambandet y ± x kommer då att kvadreras bort när vi sätter in detta i fx, y. Cirkeln x + y skär vidare x-axeln i x ±. Vi bestämmer också x-koordinaterna för skärningspunkterna mellan linjen x+y och çirkeln x + y. Av x + y fås y x, som insatt i x + y ger x, varav fås x ± 6/. Randen till D består således av cirkeldelen y x, 6/ x, cirkeldelen y x, 6/ x samt linjestycket y x, 6/ x 6/. Rita figur. a Randdelen 6/ x, y x. Det gäller att fx, x x + x x, 6/ x. Vi behöver således studera ax + x x i 6/ x. Derivering ger a x 4x. Av a x fås x /, och x / ligger i intervallet 6/ x. Vi får följande schema för ax i intervallet 6/ x. x 6 a x + ax Det största funktionsvärdet här är således 7/, och eftersom + + > är 6 det minsta funktionsvärdet här.
2 b Randdelen 6/ x, y x. Det gäller att fx, x x + x x, 6/ x. Funktionsvärdena här är således en delmängd av funktionsvärdena i a. c Randdelen 6/ x 6/, y x. Det gäller att fx, x x, 6/ x 6/. Funktionen cx x är strängt växande från b 6/ 6 till b 6/ 6 i 6/ x 6/. iii f:s största och minsta värde i D Av räkningarna ovan framgår att f:s största värde i D är max, 7/, 6 7/ ty 6 < 9 < 7/, och att det minsta värdet är min, Beräkning av ekvationerna för de linjer som begänsar parallellogrammen D ger att D är parallellogramområdet x + y 6, x + y 6. Vi avbildar D bijektivt på en axelparallell rektangel genom att göra substitutionen { u x + y v x + y { x u v y u + v. Området D övergår då i den axelparallella rektangeln u 6, v 6. Substitutionens funktionaldeterminant x x dx, y du, v u v. D y u Formeln för variabelsubstitution i dubbelintegral och fortsatt räkning ger sedan att x + y dxdy u + v dudv 9 9 y v u 6 v 6 9 u 6 u + v dudv 9 v 6 ] v6 u + v du 9 u + + u + 6 ] 6 v 9 u + v dv du u + u + 6 du Alla tre differentialekvationerna har y + y som motsvarande homogena ekvation och vi börjar med att lösa denna differentialekvation. i Den allmänna reella lösningen till ekvationen y + y. Tillhörande karakteristisk ekvation r + har rötterna ±i. Den allmänna reella lösningen är således y h A cos x + B sin x, där A och B är godtyckliga reella konstanter. För att få lösningarna till de givna differentialekvationerna behöver vi också partikulärlösningar till dessa.
3 ii Partikulärlösning till var och en av de givna differentialekvationerna Betrakta differentialekvationen z + z e ix. Låt z vara en lösning till denna ekvation. Eftersom Re e ix cos x och Im e ix sin x är då respektive Rez, Imz och Rez + Imz en partikulärlösning till respektive Vi hittar en lösning till genom att där sätta z we ix. Efter förenkling och förkortning med e ix som är skilt från för alla reella tal x fås ekvationen En lösning till denna ekvation är som lätt ses En lösning till är således w + iw. w i x ix. z we ix ixeix ix cos x + i sin x x sin x i x cos x. För denna lösning z gäller och således är respektive en partikulärlösning y p till respektive Rez x sin x och Imz x cos x, x sin x, x cos x och x sin x x cos x iii Den allmänna reella lösningen till var och en av de givna ekvationerna. Den allmänna reella lösningen är y y h + y p. Enligt ovan är således respektive y A cos x + B sin x + x sin x, y A cos x + B sin x x cos x och y A cos x + B sin x + x sin x x cos x, där A och B är godtyckliga reella konstanter, den allmänna reella lösningen till respektive 5. Sätt fx, y, z xy z. Den givna ytan är då nivåytan fx, y, z till f. Enligt en egenskap hos gradienten är fa, b, c en normalvektor till givna ytan i punkten a, b, c på ytan. Tangentplanet till givna ytan i punkten a, b, x på ytan är således det plan som går genom
4 punkten a, b, c och har fa, b, c som en normalvektor. Tangentplanets ekvation kan således skrivas fa, b, c x a, y b, z c, eller vilket är samma sak f a, b, cx a + f a, b, cy b + f a, b, cz c. I fallet fx, y, z xy z, som gäller här, ger derivering att fx, y, z f x, y, z, f x, y, z, f x, y, z y z, xyz, xy z, och vi får tangentplanet b c x a + abc y b + ab c z c b c x + abc y + ab c z 6ab c. Vi noterar att eftersom a, b, c är en punkt på ytan xy z gäller alltid att ab c. Vi kan därför alltid dividera med 6ab c i båda led i sista ekvationen ovan och få att x 6a + y b + z c, vilket är den sökta formen för tangentplanets ekvation. 6. Enligt Taylors formel gäller för godtyckligt t R och godtyckligt heltal n att sin t k k k! tk + n cos θt tn+ n +! där θ, ] och θ beror av n och t. Sätt t x så fås för godtyckligt x R och godtyckligt heltal n att sin x k k k k! x4k + n x 4n+ n +! där θ, ] och θ beror av n och x. Integration av ger sedan att sin x k dx k! x4k dx + n x 4n+ dx. n +! Men 4 och 5 n n +! k k n +! k k! x4k dx k k! 4k x4k k ] k k! k x 4n+ dx n +! x 4n+ dx 4 x 4k dx k k! 4k n +! x 4n+ dx x 4n+ dx
5 n +! 4n + x4n+ ] n +! 4n +. I 5 har vi använt triangelolikheten för integraler samt att cos u för alla u R. Tillsammans visar, 4 och 5 att 6 sin x dx k k k! 4k + ε n där ε n n +! 4n +. Sätt I sin x dx, s n k k k! 4k och t n n +! 4n +. Av 6 följer att om heltalet n är så stort att t n < så ger s n värdet av I med absolutfel <. Vi har att Således ger t! 7 4 >, men t 5! <. s k k! 4k 4, k värdet av I med absolutfel <. 5
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Övningar till Matematisk analys III Erik Svensson
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik -8-8 Övningar till Matematisk analys III Erik Svensson. För varje gränsvärde nedan bestäm gränsvärdet eller visa att gränsvärdet inte existerar.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open.
Institutionen för matematik KTH Tentamensskrivning, 25 6 3, kl 8 3 5B9, Vektoranalys, för Open Uppgifterna 4 5 svarar mot varsitt moment i den kontinuerliga examinationen Av dessa uppgifter skall man bara
Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.
Typexempel med utförliga lösningar TMV3. Matem. Analys i En Var.. V, AT. Försök alltid att lösa exemplen själv först. Integration. ([AE, Adams&Essex] Ex. 5.6. ) Beräkna integralen x + 6x + 3 dx LSN (Lösning).
LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13
LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik
KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Tentamen IX1304 Matematik, Analys , lösningsidéer
Tentamen IX0 Matematik, Analys 0-05-0, lösningsidéer. Gör en linjär approximation till kurvan y x, kring den punkt på kurvan där lutningen är. Bestäm sedan för vilka x som det relativa felet för approximationen
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
TMV036 Analys och Linjär Algebra K Kf Bt, del C
MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
= 0 genom att införa de nya
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Kontrollskrivning 1A
Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
TNA004 Analys II Tentamen Lösningsskisser
TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Lösningar till Matematisk analys 4,
Lösningar till Matematisk analys 4, 05054. a Sätt a k k + k +, b k k e /k Serien k a k är positiv. Vi har att och c k k! 4 k k! för k,,... a k k + k + k k för stora k k och mera precist att / a k k k +
Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.
Lösningar till MVE6 Matematisk analys i en variabel för I 7-4-. a Division ger yy + y x. Ekvationen är alltså separabel. Integration av vänstra ledet ger y + y dy ln + y Efter integration blir det alltså
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Lösningar till tentamen i Matematik II, 5B1116, 5B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004.
Institutionen för matematik. KTH Lösningar till tentamen i Matematik II, B1116, B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004. 1. Välj en punkt i planet 3x + 3y z = 4, exempelvis
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Övningstenta: Lösningsförslag
Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
Blandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och
u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)
ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C
MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A
Institutionen för matematik SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A 1. Betrakta funktionen fx, y = x + y och området D som ges av olikheterna x, y och x + y 1.
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Kap Dubbelintegraler.
Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )
Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:
Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
2. Avgör om x och z är implicit definierade som funktion av y via följande ekvationssystem. x 3 + xy + y 2 + z 2 = 0 x + x 3 y + xy 3 + xz 3 = 0
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 1 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
SF1626 Flervariabelanalys
1 / 19 SF1626 Flervariabelanalys Föreläsning 1 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 218, Period 3 2 / 19 SF1626 Flervariabelanalys agens Lektion ubbelintegraler: Avsnitt 14.1-14.2
Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand
x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
Figur 1: Postföretagets rektangulära låda, definitioner.
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl
MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C
Tentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)
S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och
Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
Lösningar till Matematisk analys
Lösningar till Matematis analys 0820. Stationära punter. f (x, y) = 8x(x 2 y), f 2(x, y) = 4(y x 2 )). Vi ar alltså att f (x, y) = f 2(x, y) = 0 { x(x 2 y) = 0 y x 2 = 0. Första evationen ovan är uppfylld
INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy,
LUNS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING FLERIMENSIONELL ANALYS --3 kl. 8 3 INGA HJÄLPMEEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna dubbelintegralen y ddy, där är
SF1626 Flervariabelanalys
Föreläsning 11 Institutionen för matematik KTH VT 2018 1 agens program Variabelsubstitution i dubbelintegraler Något om generaliserade integraler och medelvärden Bokens kapitel 14.4 och i någon mån också
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.
SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:
Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =
SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.