SF1626 Flervariabelanalys Tentamen 14 mars 2011,
|
|
- Mikael Sundberg
- för 8 år sedan
- Visningar:
Transkript
1 SF1626 Flervariabelanalys Tentamen 14 mars 2011, Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På de tre första uppgifterna, som utgör del A, är det endast möjligt att få 0, 3 eller 4 poäng. essa tre uppgifter kan ersättas med resultat från den löpande eaminationen. e två kontrollskrivningarna svarar mot uppgift 1 och 2 och seminarierna mot uppgift 3. Godkänd kontrollskrivning eller godkänd seminarieserie ger 3 poäng på motsvarande uppgift och väl godkänd kontrollskrivning eller seminarieserie ger 4 poäng. För att höja från den löpande eaminationen från 3 poäng till 4 krävs att hela uppgiften löses. Resultat från den löpande eaminationen kan endast tillgodoräknas vid ordinarie tentamen och ordinarie omtentamen för den aktuella kursomgången. e tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som är främst till för de högre betygen, A, B och C. Betygsgränserna vid tentamen kommer att ges av Betyg A B C E F Total poäng varav från del C För full poäng på en uppgift krävs att lösningarna är väl presenterade och lätta att följa. et innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.
2 2 el A 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin f + y f y = 2f. är en lösning till differentialekvationen 2) Beräkna volymen av det område som ligger mellan ytorna z = y och z = y 2. 3) Vektorfältet F ges av F, y) = 2y + y 3, 2 + 3y 2 ). a) Visa att fältet F är konservativt och bestäm en potentialfunktion till F. b) Beräkna kurvintegralen γ F dr då γ löper längs parabeln y = 2 från punkten 1, 1) till punkten 2, 4). el B 4) Funktionen T, y, z) = 2 + 3y)e z beskriver temperaturen i en viss del av rummet. a) I vilken riktning utgående från punkten 1, 1, 0) är temperaturökningen per längdenhet som störst? 2 p) b) Beräkna med hjälp av linjär approimation ett närmevärde till hur mycket temperaturen ökar om man rör sig en tiondels längdenhet ifrån punkten 1, 1, 0) i riktning mot punkten 3, 3, 1). 2 p) 5) Beräkna trippelintegralen K ddydz då K är det område i rymden som begränsas av de tre koordinatplanen = 0, y = 0 och z = 0 samt planet y z + 1 = 0. 6) Beräkna flödet av fältet F, y, z) = y,, 4) genom den del av ytan z = 1 2 y 2 där 0, y 0 och z 0. Ytstycket är orienterat så att normalvektorfältet har positiv z-komponent.
3 el C 7) En rektangulär låda utan lock skall tillverkas som rymmer 1 kubikmeter. Bottenytan och framsidan tillverkas av ett material som kostar 5 kronor per kvadratmeter, de övriga tre sidorna tillverkas av ett material som som kostar 1 krona per kvadratmeter. Hur skall lådan dimensioneras för att den totala kostnaden för materialet ska bli så liten som möjligt? 8) Bestäm den slutna enkla kurva γ som gör att värdet av kurvintegralen 6 2 y + y 3 20y) d y 2 ) dy γ blir så stort som möjligt när γ genomlöps ett varv moturs. 9) Visa med hjälp av implicita funktionssatsen att lokalt kring punkten, y, z) = 1,, 1) så kan lösningsmängden till ekvationen 2 y + e y+z + z 2 = 1 beskrivas med hjälp av en funktionsyta y = g, z). Beräkna därefter g 1, 1), g z1, 1) och g z1, 1). 3
4 SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 2011, ) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning: Vi beräknar de partiella derivatorna f y ) y = 2y4 + 2 sin + 2 cos ) 3 ) y. 2 och f y ) 1 y = 4y cos. Insatt i den givna ekvationen får vi V.L. = 2 y4 y ) y + 2 sin + 2 cos ) 3 ) y ) ) + y 4 y3 y cos ) = 2 y4 y ) sin = 2f, y)h.l. Funktionen f, y) uppfyller alltså given differentialekvation. 2) Beräkna volymen av det område som ligger mellan ytorna z = y och z = y 2. Lösning: Skärningskurvans projektion på y-planet ges av y = y y 2 = y 2 = 4. Alltså ligger området ovanför cirkelskivan = {, y) : 2 + y 2 4.} Anmärkning: Ytorna är rotationsparaboloider.) Vi betecknar f 1, y) = y och f 2, y) = y 2. Substitutionen, y) = 0, 0) i båda funktioner visar att f 2, y) f 1, y) för, y). ärför V = f 2, y) f 1, y))ddy = y 2 )ddy Med hjälp av polära koordinater = r cos ϕ, y = r sin ϕ, ddy = rdrdφ får vi V = Svar: 16π. 8 2r 2 )rdrdϕ = 2π 0 dϕ 2 0 8r 2r 3 )dr = 2π 8 = 16π
5 2 3) Vektorfältet F ges av F, y) = 2y + y 3, 2 + 3y 2 ). a) Visa att fältet F är konservativt och bestäm en potentialfunktion till F. b) Beräkna kurvintegralen γ F dr då γ löper längs parabeln y = 2 från punkten 1, 1) till punkten 2, 4). Lösning: a) Sätt P, y) = 2y + y 3 och Q, y) = 2 + 3y 2, så att F = P, Q). Eftersom Q = 2 + 3y2 = P i hela planet har F en potential U, y) i hela y planet sådan att P = U U och Q =.Vi bestämmer U: y U U = d = P d = 2y + y 3 d = 2 y + y 3 + hy) där hy) är någon tillsvidare obekant funktion. Genom att nu derivera detta utryck för U med avseende på y och kräva att detta är lika med Q får vi 2 +3y 2 +h y) = 2 +3y 2 = h y) = 0 = hy) = C, där C är en godtycklig konstant. Vi väljer C = 0 och får potenialen U, y) = 2 y + y 3. b) Eftersom fältet F är konservativt ges den sökta integralen av skillnaden i potential, dvs γ F dr = U2, 4) U1, 1) = = 142 Integralen kan också lätt beräknas genom parametrisering av kurvan.) Svar: a) T e U, y) = 2 y + y 3 b) 142
6 4) Funktionen T, y, z) = 2 + 3y)e z beskriver temperaturen i en viss del av rummet. a) I vilken riktning utgående från punkten 1, 1, 0) är temperaturökningen per längdenhet som störst? 2 p) b) Beräkna med hjälp av linjär approimation ett närmevärde till hur mycket temperaturen ökar om man rör sig en tiondels längdenhet ifrån punkten 1, 1, 0) i riktning mot punkten 3, 3, 1). 2 p) Lösning: a) Ökningen är som snabbast i gradientens riktning. Vi beräknar gradienten grad T, y, z) = 2e z, 3e z, 2 + 3y)e z ), och i punkten 1, 1, 0) får vi grad T 1, 1, 0) = 2, 3, 5). b) Vektorn v = 3, 3, 1) 1, 1, 0) = 2, 2, 1) pekar i den angivna riktningen. Vi söker nu en vektor h = h, k, l) som pekar i v:s riktning och som har längden 1/10. Eftersom v = = 3 är h = h, k, l) = 1/30v = 2/30, 2/30, 1/30). en linjära approimationen till temperaturökningen T ges av T = grad T 1, 1, 0) h, k, l) = 2, 3, 5) 2/30, 2/30, 1/30) = 1/6. 3 Svar: a) I gradientens riktning, grad T 1, 1, 0) = 2, 3, 5). b) Temperaturen ökar med approimativt 1/6. 5) Beräkna trippelintegralen K ddydz då K är det område i rymden som begränsas av de tre koordinatplanen = 0, y = 0 och z = 0 samt planet y z + 1 = 0. Lösning: Planet y z + 1 = 0 går genom de tre punkterna, 0, 0), 0, 1, 0) och 0, 0, 1). Området K beskrivs av olikheterna rita figur!) 0, 0 y 1 + och 0 z 1 + y. Vi får y 0 1+ ddydz = dz dy d = [z] 1+ y 0 dy d K Svar: -1/24 = = y dy d = 0 3 / /2 d = /24. 0 [y + y y 2 /2] 1+ 0 d
7 4 6) Beräkna flödet av fältet F, y, z) = y,, 4) genom den del av ytan z = 1 2 y 2 där 0, y 0 och z 0. Ytstycket är orienterat så att normalvektorfältet har positiv z-komponent. Lösning: Ytan är en funktionsyta z = f, y). Ytan skär y-planet längs cirkeln 2 + y 2 = 1, och z 0 är ekivalent med att 2 + y 2 1. Låt beteckna mängden = {, y) R 2 : 2 + y 2 1, 0, y 0}. Med normalvektorfältet till ytan med positiv z-komponent) n = f, f y, 1) = 2, 2y, 1) ges flödet av F n ddy = y,, 4) 2, 2y, 1) ddy = 4 ddy = 4Area) = 4 π 4 = π. Svar: π. 7) En rektangulär låda utan lock skall tillverkas som rymmer 1 kubikmeter. Bottenytan och framsidan tillverkas av ett material som kostar 5 kronor per kvadratmeter, de övriga tre sidorna tillverkas av ett material som som kostar 1 krona per kvadratmeter. Hur skall lådan dimensioneras för att den totala kostnaden för materialet ska bli så liten som möjligt? Lösning: Låt > 0 beteckna framsidans och baksidans längd längs bottenytan, y > 0 sidoytornas längd längs botteytan och z > 0 lådans höjd, i meter. Kostnaden i kronor ges då av f, y, z) = 5y + z) + 1z + 2yz) = 5y + 2yz + 6z. enna funktion skall minimeras under bivillkoret att volymen V = yz [m 3 ] uppfyller V = 1. etta är ekvialent med att z = 1 och vi får det ekvivalenta problemet y att minimera ) 1 g, y) = f, y, = 5y + 2 y + 6, > 0, y > 0. y { g, y) = 0 g y, y) = 0 Vi söker först kritiska punkter i g i första kvadranten. { { 5y 2 = 0 5y 2 = = 0 y 2 y = 2y2 6 2 { = l y = 3l där l = Tredje ekvationssystemet fås ur det andra genom att först flytta bråkuttrycken till H.L i andra systemet och sedan dividera ledvis. z ges av z = 1 y = 1 3l = l 2 3l = l = 5 2 l. Vi måste också visa att denna kritsika punkt ger minsta värde för funktionen g definerade på mängden Q = {, y) R 2 ; > 0, y > 0}. Låt Q M = {, y) R 2 1 ; M, y M 2 }. et är en kompakt mängd så g antar säkert största och minsta värde på Q M för varje M > 1, och då g är deriverbar måste detta ske i en inre kritisk punkt eller på randen. För stora värden på M ligger ) 1/
8 den ovan funna kritiska punkten i Q M och vidare ser man g, y) M på randen till Q M. För alla stora värden på M måste alltså minmimivärdet antas i den inre kritiska punkten och eftersom värdet på randen M när M, följer g, y) > M för alla, y) i första kvadranten men utanför Q M. Svar: Fram- och baksidans kant mot bottenytan skall ges längden = l, meter, sidoytornas kant mot botteytan skall ha längd y = 3l meter och höjden skall vara z = 5 2 l meter, där l = 2 15) 1/3. 5 8) Bestäm den slutna enkla kurva γ som gör att värdet av kurvintegralen 6 2 y + y 3 20y) d y 2 ) dy γ blir så stort som möjligt när γ genomlöps ett varv moturs. Lösning: Vi använder först Greens formel. Låt Ω = Ωγ) beteckna det område som innesluts av en enkel sluten kurva γ. Greens formel ger 6 2 y + y 3 20y) d y 2 ) dy γ = Ω y 2 ) y 62 y + y 3 20y) ddy = y y ddy = y 2 ddy Ω Ω =9 4 2 y 2 ddy. Ω enna integral antar sitt största värde när Ω tas som det största område där integranden 4 2 y 2 0, dvs när γ väljs som cirkeln med ekvation 2 + y 2 = 4 Svar: Cirkeln γ = {, y); 2 + y 2 = 4} maimerar den givna kurvintegralen. 9) Visa med hjälp av implicita funktionssatsen att lokalt kring punkten, y, z) = 1,, 1) så kan lösningsmängden till ekvationen 2 y + e y+z + z 2 = 1 beskrivas med hjälp av en funktionsyta y = g, z). Beräkna därefter g 1, 1), g z1, 1) och g z1, 1). Lösning: Låt F, y, z) = 2 y+e y+z +z 2. Vi verifierar först att F 1,, 1) = 1. Vi beräknar sedan F/y1,, 1). F y, y, z) = 2 + e y+z så F 1,, 1) = 2 0. y
9 6 Enligt Implicita funktionssatsen eisterar då en en funktion g, z) defineradei en omgivning till punkten 1, 1) sådan att g1, 1) = och F, g, y), z) = 1, det vill säga att den givna nivåytan 2 y + e y+z + z 2 = 1 beskrivs av funktionsytan y = g, z) i en omgivning till punkten 1,, 1). Vi beräknar nu de partiella derviatorna av g. erivering m a p på ger 2 g, z) + e g,z)+z + z 2) = 1) 2g, z) + 2 g + eg,z)+z g + z2 = 0. I punkten, z) = 1, 1) där g1, 1) = får vi g erivering m a p z ger 1, 1) + 1 = 0 = g 1, 1) = g, z) + e g,z)+z + z 2) = 1) 2 g + eg,z)+z g + 1) + 2z = 0 och i punkten, z) = 1, 1) får vi g g g 1, 1) + 1, 1) = 0 = 1, 1) = 3 2. Slutligen beräknar vi den blandade andraderivatan till g. Vi utnyttjar beräkningen av g ovan. 2 g, z) + e g,z)+z + z 2) = ) 2g, z) + 2 g g + eg,z)+z + z2 = 0 1) 2 g + 2 g 2 + eg,z)+z g g + 1) + 2 g eg,z)+z + 2z = 0 I punkten, z) = 1, 1), och med utnyttjande av g1, 1) =, g 1, 1) = 1 2 och g 1, 1) = 3 får vi ) + 2 g 1, 1) + 1 ) g 1, 1) + 2 = 0. vilket ger att g z1, 1) = 5 8. Svar: g 1, 1) = 1 2, g z1, 1) = 3 2 och g z1, 1) = 5 8.
x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.
SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik
KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna
6. Räkna ut integralen. z dx dy dz,
Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära
SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017
Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)
Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,
Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open.
Institutionen för matematik KTH Tentamensskrivning, 25 6 3, kl 8 3 5B9, Vektoranalys, för Open Uppgifterna 4 5 svarar mot varsitt moment i den kontinuerliga examinationen Av dessa uppgifter skall man bara
SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017
Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.
Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga
(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014
SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A
Lösning till kontrollskrivning 1A
KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy,
LUNS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING FLERIMENSIONELL ANALYS --3 kl. 8 3 INGA HJÄLPMEEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna dubbelintegralen y ddy, där är
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.
1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,
Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand
Kontrollskrivning 1A
Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen
SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
Inlämningsuppgift nr 2, lösningar
UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det
Figur 1: Postföretagets rektangulära låda, definitioner.
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
Tentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
= 0 genom att införa de nya
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.
SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013
SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).
KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
Övningstenta: Lösningsförslag
Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4
För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg
ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det
Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t
Integranden blir. Flödet ges alltså av = 3
Lektion 7, Flervariabelanals den 23 februari 2 6.4.2 Använd Gauss sats för att beräkna flödet av ut ur sfären med ekvationen där a >. Flödet ut ur sfären ges av F e e + 2 e e + e 2 + 2 + 2 a 2 F d, som
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det
Tentamen i Flervariabelanalys, MVE , π, kl
Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg
TMV036 Analys och Linjär Algebra K Kf Bt, del C
MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv
Tentamen: Lösningsförslag
Tentamen: Löningförlag Fredag 8 juni 8 8:-3: SF74 Flervariabelanaly Inga hjälpmedel är tillåtna Ma: 4 poäng (4 poäng Rita följande mängder i R : (a A {(, y R ma(, y } (b B {(, y R + y 4 4 4y y } (c C {(,
Lösningar till Matematisk analys 4,
Lösningar till Matematisk analys 4, 05054. a Sätt a k k + k +, b k k e /k Serien k a k är positiv. Vi har att och c k k! 4 k k! för k,,... a k k + k + k k för stora k k och mera precist att / a k k k +
u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)
ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
TMV036 Analys och linjär algebra K Kf Bt, del C
MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13
LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4
2. Avgör om x och z är implicit definierade som funktion av y via följande ekvationssystem. x 3 + xy + y 2 + z 2 = 0 x + x 3 y + xy 3 + xz 3 = 0
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 1 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när
f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2
TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från
A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt
TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna
ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler
Tentamen TMA043 Flervariabelanalys E2
Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat
Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl
Institutionen för Matematik TH irsti Mattila Tentamensskrivning, ompletteringskurs i matematik 5B4 Onsdagen den 8 december, kl 8.-. Preliminära betgsgränser för, 4 och 5 är 8, 4 och 54 poäng. Inga hjälpmedel
TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C
MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).
Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA044 Flervariabelanalys E2 2014-10-30 kl. 8.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Elin Solberg, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,
23 Konservativa fält i R 3 och rotation
Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl
MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna
Lektionsblad 9, tis 16/2 2010
Lektionsblad 9, tis 16/2 2010 Först en gång till optimering med bivillkor. Lös uppgifterna 4.25 (om du har problem med denna väldigt typiska uppgift, så studera även lösningen till 4.24), 4.26 (nästan