Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
|
|
- Rickard Berglund
- för 8 år sedan
- Visningar:
Transkript
1 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block med massan m hållas i jämvikt på ett sluttande, strävt plan med lutningsvinkel ". är trådspänningen har värdet S + är blocket på gränsen till att glida uppåt, och när trådspänningen är S " är blocket på gränsen till att glida utför planet. Bestäm friktionstalet µ. (3p) Tyngdaccelerationen g är känd. Trissan är lätt och lättrörlig. 2. Två små hylsor med vardera massan m kan glida symmetriskt och friktionsfritt längs en ringformad, lätt ledstång med radie R. Ledstången hålls uppe av en lätt tråd som är fäst i taket. Hylsorna släpps i sina översta lägen och stöter fullständigt oelastiskt ihop i nedersta läget i banan. Ringen förblir hängande i vila. Bestäm trådkraftens storlek omedelbart innan respektive omedelbart efter stöten. (3p) Tyngdaccelerationen g är känd. 3. En satellit med massan m befinner sig i en okänd ellipsbana runt jorden. På maxhöjden 2R ovanför jordytan mäts farten till v = ygr, där g är tyngdaccelerationen och R är jordradien. y är ett mätetal i intervallet 0 < y < 2 /3. Bestäm storaxelns hela längd samt lillaxelns halva längd. (3p) 4. En liten vagn kan rulla fritt längs ett horisontellt spår. Vagnen är fäst i en lätt fjäder med fjäderkonstanten k och en dämpare med dämpningskonstanten c.vagnen är i vila med fjädern ospänd vid x = 0. Bestäm vagnens massa m så att dess rörelse alltid blir en kritiskt dämpad rörelse. (3p)
2 Teoritentamen 5. a) En tunn, homogen stav med massa m och längd L påverkas av tyngdkraften neråt i figuren. Ange (rita i egen figur) tyngdkraftsresultanten i A. b) Vilka (om någon) av följande är grundstorheter i mekaniken: Kraft, acceleration, rörelsemängd, tyngdacceleration, fjäderkonstanten? c) Härled den s k sambandsformeln för ett kraftsystems kraftmoment. 6. a) Definiera masscentrums läge för ett partikelsystem. b) I planet z = 0 kan läge och hastighet för en partikel beskrivas av uttrycken r = re r, respektive v = r e r + r" e ", där e r = ( cos", sin",0) och e " = (#sin", cos",0). Härled uttrycket för accelerationen. c) Bevisa för en konservativ krafts arbete sambandet U 0"1 = V 0 #V 1 med kraftens potentiella energier. 7. a) En partikel med massa m, läge r och hastighet v påverkas av kraften F. Formulera för denna partikel lagen om arbete och kinetisk energi. För vilka krafter gäller lagen. b) Härled momentlagen för en partikel c) Härled uttrycket för en partikels rörelsemängdsmoment med hjälp av cylinderkomponenter för rörelse i ett plan z=0. 8. a) Två satelliter med lika massor samt lika storaxlar rör sig i sina olika elliptiska banor. De har olika sektorhastigheter, men har två mekaniska storheter lika (bortsett från massor och storaxlar i banorna). Vilka? b) Ett rakt svängande system beskrivs av ekvationen x + c x + bx = a, där a, b och c är konstanter. För vilka värden på dessa konstanter betecknas systemet som kritiskt, respektive svagt dämpat? Ange även svängningens jämviktsläge. c) ämn två saker som kännetecknar en mekanisk resonans? /Thylwe
3 1. Problemlösningar Krafter på blocket införs i figuren för gränsfallet att blocket kan glida upp för planet. Friktionstalet kan beräknas på flera sätt och S + och S " är inte oberoende av varandra. Lösning: Kraftjämvikt ger: S + " mgsin# " µ = 0 (uppför), " mgcos# = 0 (nerför). Dvs: S + = mgsin" + µmgcos". Härur kan friktionstalet bestämmas. På liknande sätt, vid andra gränsen till glidning utför backen: S " = mgsin# " µmgcos#. Härur kan friktionstalet bestämmas också. Skillnaden av trådspänningarna ger: S + " S + = 2µmgcos#, så att friktionstalet även kan beräknas enligt: µ = S + " S " 2mgcos# (svar). 2. Krafter på massorna krafter på ringen Lösning: Ingen friktion i fallrörelsen. Hylsornas farter alldeles innan stöten ges ur energiprincipen: Total energi: 2mg( 2R) = mv 2 0 => v 0 = 2 gr. Efter stöt är båda massorna i vila. ormalkraften på en partikel direkt före stöt ges efter en kraftanalys av ewton 2 i normalriktningen: 2 ( e n ): m v 0 2 R = 0 2 " mg => 0 = 2m v mg =10mg. ormalkraften efter stöt blir (utan R fart): 2 ( e n ):0 = 1 2 " mg => 1 = 2mg. Belastningen är motkraften (ewton 3) till S i figuren som beskriver krafter på den masslösa ringen. Eftersom ringen/ledstången ligger still är S=.
4 3. Lösning: Totala mekaniska energin E beräknas och sätts lika med banenergin: E = m 2 ( ygr) " mgr2 3R = " mgr2 2a " y = R 2a => R 2a = 2 " 3y 6, där 2a är hela storaxelns längd. Uträkning av denna ger: => 2a = 6 R. Ellipsens geometri ger halva fokalavståndet 2 " 3y c = r max " a, där r max = 3R. Pythagoras sats ger b 2 = a 2 " c 2 = 2r max a " r max. Insättning av inramade resultat ger: b 2 # = 9R 3y & 3y % ( R och b = 3R $ 2 " 3y ' 2 " 3y Lösning: Massan ska bestämmas. Två typer av krafter verkar på vagnen. Fjäderkraften F k = "kx och dämparkraften F c = "c x, båda i rörelseriktningen. ewtons 2:a lag: m x = "kx " c x. Svängningsekvationen: x + c m x + k x = 0. Inför: naturliga vinkelfrekvensen m för svängningen: " n = k m, samt dämpningsförhållandet " genom likheten 2" n# = c m. För kritisk dämpning fås: 2 k m = c m => m = c 2 4k.
5 Teoridelen 5. a) b) Inga av dessa. c) Ett kraftsystem kan alltid skrivas som ett antal krafter F j med motsvarande angreppspunkter r j (även för kraftparsmoment). I momentpunkten A mäter vi det totala momentet ([ ] # F j ) M A = $ r j " r A, för samma krafter. I momentpunkten B fås: M B = $ [ r j " r B ] # F j ( ) Skillnaden blir i detta fall: ([ ] # F j ) M A " M B = $ r j " r A " r j + r B = $ (r B " r A ) # F j = (r B " r A ) # $ F j. ( ) Detta uttryck kan lätt förenklas om vi inför totala kraften F = " F j samt relativa läget r AB = r B " r A. Sambandet blir: M A = M B + r AB " F. 6. a) r G = " m i r i, där m i är massan för partikeln som befinner sig i r i. i=1 " m i i=1 b) Acceleration i planet z = 0: Enligt definition: a = v, så att a = r e r + r e r + r " e " + r " e " + r" e ". Men från de givna uttrycken: e r = " de r d" = " e ", och e " = " de " d" = # " e r. så att slutligen: a = ( r " r# 2 )e r + ( r # + 2 r # )e #. r c) Definition av en krafts potentiella energi: V (r) = " # F dr. Utfört arbete från r 0 till r 1 definieras: U 0"1 = r # 1 F dr. Arbetet delas upp i två integraler, via r 0 r referenspunkten, så att 0 % r U 0"1 = # $ 1 ( F dr #'# F dr r ref $ *. Enligt definition av & r ref ) potentiell energi för ett givet läge fås då: U 0"1 = V 0 #V 1. r ref
6 t 1 # 7. a) Kraftens arbete: U 0"1 = Pdt, där P = F v är kraftens effekt. Kinetisk energi t 0 definieras T = 1 2 m v 2. Lagen: U 0"1 = T 1 # T 0, där T 1 är värdet på kinetiska energin vid tiden t 1, osv. Lagen gäller alla fysikaliska krafter som gäller för ewtons 2:a lag. b) Definitioner: Rörelsemängd p = mv, där v är hastigheten, rörelsemändsmoment H O = r " p. Tids derivering ger H O = d( r " p ) = v " p + r " p dt = r " p, ty v och p är parallella. ewtons 2:a lag: p = F medför att r " p = r " F. Sammantaget fås momentlagen: H O = M O, där vi infört kraftmomentet enligt definitionen M O = r " F. c) Med origo i planet där kraftens verkningslinje hela tiden går igenom fås: r = re r, p = m( r e r + r" e " ). Insättning i definitionen av rörelsemängdsmomentet och förenkling: H O = r " p = mr r ( e r " e r ) mr2# ( e " e ) 14 r 243 # =0 = mr 2 # e z Svar: H O = mr 2 " e z. e z 8. a) Omloppstiden och den mekaniska energin. Fysikaliska konstanter som alltid har samma värden räknas inte som mekaniska storheter. b) Svängningsekvationen för dämpad svängning: x + 2"# n x + # 2 n x = a. I aktuellt fall görs identifieringar: " n = b, " = c. Alla positiva värden på b och 2 b c som satisfierar: c = 2 b (kritiskt dämpat), 0 < c < 2 b (svagt dämpat). I jämviktsläget kan massan ligga still, med hastighet och acceleration lika med 0. Detta ger ur svängningsekvationen jämviktsläget: x j = a/b. c) Responsamplituden kan bli mycket stor (vid liten dämpning), samt responsen riskerar att byta svängningsfas (gräns mellan med-fas och mot-fas).
Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
Läs merTentamen i Mekanik SG1130, baskurs P1. Problemtentamen
010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt
Läs merTentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Läs merTentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
Läs merTentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!
2015-06-08 Tentamen i Mekanik I SG1130, baskurs P1 och M1. KTH Mekanik OBS: Inga hjälpmede förutom rit- och skrivdon får användas! Problemtentamen 1. Ett homogent halvcylinderskal hålls i jämvikt på ett
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med
Läs mer" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Läs mer. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:
KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Läs merTentamen i Mekanik SG1130, baskurs. Problemtentamen
013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på
Läs merKOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v
Läs merTentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs mer= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Läs merObs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer!
1) m M Problemlösningar µ α α Lösning: Frilägg massorna: T N N F µ T Mg mg Jämvikt för M kräver T Mgsin α = 0 (1) a) Gränsfall F µ = µ N men jämvikt för m kräver: N mg cosα = 0 (2) T µ N mgsinα = 0 (3)
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merTentamen i Mekanik SG1130, baskurs P1. Problemtentamen
011-03-17 Tentamen i Meani SG1130, basurs P1. OBS: Inga hjälpmede förutom rit- och srivdon får användas! KTH Meani 1. Problemtentamen Ett tunt hyllplan (plana) med massan m är fäst i en led (gångjärn)
Läs merKUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
Läs merKOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Läs merOm den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Läs merFöreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Läs merSG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.
Läs merMer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta
Läs merNEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har
Läs merKOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Läs mer" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Läs merTentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Läs merInre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:
Läs merFÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
Läs mer" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Läs merVar ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,
Läs mer=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs
1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis
Läs merLÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Läs merFöreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
Läs merStelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
1 KOMIHÅG 16: Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 17: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:
Läs merNewtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Läs merEnda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.
KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer
Läs mer(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
Läs meruniversity-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Läs merHärled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Läs merKOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
1 KOMIHÅG 3: --------------------------------- Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av
Läs merMålsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Läs mer6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
2005-08-25 Tentamen i Mekanik 5C1107, baskurs S2. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. h 2a roblemtentamen En homogen låda står på ett strävt horisontellt plan och
Läs merÖvningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Läs merALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Läs merDefinitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
Läs merTFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Läs merTFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
Läs merLösningar till problemtentamen
KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Läs merFöreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
Läs merRepetition Mekanik, grundkurs
Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet
Läs merInlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
Läs merLösningar till övningar Arbete och Energi
Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan
Läs merSG1140, Mekanik del II, för P2 och CL3MAFY
Tentaen 101218 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda
Läs merTentamen i Mekanik II
Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Läs merRepetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Läs merIntrohäfte Fysik II. för. Teknisk bastermin ht 2018
Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål
Läs merUPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Rikard Enberg, Glenn Wouda TENTAMEN 10-08-28 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 09.00-14.00 Hjälpmedel:
Läs mer3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Läs merTFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Läs merLösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
Läs merMekanik F, del 2 (FFM521)
Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:
Läs merOrdinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
Läs merKursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Läs merMekanik KF, Moment 2. o Ingenting händer: T! = T! o Den blir kortare: T! =!! o Den blir längre: T! = 2T!
Mekanik KF, Moment 2 Datum: 2013-03-18, 8-13 Författare: Jan-Erik Rubensson Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna
Läs merArbete och effekt vid rotation
ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds
Läs merMålsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter
Läs merDatum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.
Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina
Läs merm 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20
KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)
Läs merII. Partikelkinetik {RK 5,6,7}
II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar
Läs merÖvningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
Läs merMekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Läs merMekanik FK2002m. Kinetisk energi och arbete
Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång
Läs merMekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Läs merTentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Läs merUPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander TENTAMEN 11-06-03 MEKANIK II 1FA102 SKRIVTID: 5 timmar,
Läs merID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.
Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar
Läs merMekanik III Tentamen den 19 december 2008 Skrivtid 5 tim De som klarat dugga räknar ej uppgift m/2
Mekanik III Tentamen den 19 december 8 Skrivtid 5 tim De som klarat dugga räknar ej uppgift 1. 1. r mg/r m mg/r 9m/ En klots med en cylinderformad urgröpning med radie r glider på ett horisontellt, friktionsfritt
Läs mer9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
Läs merTentamen i Mekanik Statik
Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Läs merTentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
Läs merNFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.
1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså
Läs mer