Tentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!
|
|
- Ann-Christin Lundgren
- för 5 år sedan
- Visningar:
Transkript
1 Tentamen i Mekanik I SG1130, baskurs P1 och M1. KTH Mekanik OBS: Inga hjälpmede förutom rit- och skrivdon får användas! Problemtentamen 1. Ett homogent halvcylinderskal hålls i jämvikt på ett horisontellt, strävt underlag med ett horisontellt snöre. Snöret har spännkraften P i figuren, på gränsen till glidning. Det finns vid glidningsgränsen ett samband mellan skalets lutning och friktionstalet µ. Bestäm detta. Undersök speciellt fallet att glidning inträffar då lutningsvinkeln är π/2. Ledning: Masscentrum för skalet befinner sig på avståndet d = 2r /" från centrum längs symmetrilinjen i figuren. 2. En partikel med massan m befinner sig i ett glatt, horisontellt rör. Röret är smalt och fast monterat i en centralkropp, som roterar med den konstanta vinkelhastigheten " kring en vertikal axel. Centralkroppen är cylindrisk och har radien R, som i figuren. Bestäm partikelns radiella accelerationskomponent på radiella avstånd r>r. Härled även en formel som beskriver hur normalkraftens horisontella komponent på partikeln beror av den radiella hastighetskomponenten. Använd den radiella koordinaten r och bortse från normalkraftens vertikala komponent som har storleken mg, där g är tyngdaccelerationen. 3. En kommunikationssatellit med massan m befinner sig i en elliptisk bana kring jorden med min- och maxhöjder över jordytan som i figuren. På vilket avstånd från jordytan har satelliten en fart v som är v=v A / 2, där v A är den högsta farten i banan? Tyngdaccelerationen g vid jordytan är känd. 4. En cylinder med massan m hänger i en fjäder med fjäderkonstanten k som skall bestämmas. Under cylindern sitter en viskös dämpare med en kraftkonstant c. Bestäm fjäderkonstanten k så att rörelsen blir kritiskt dämpad. Bestäm också cylinderns maximala förflyttning nedåt om den släpps från ett läge där fjädern är ospänd. Tyngdaccelerationen g får användas.
2 Teoritentamen 5. P h A 2a a) En homogen låda står på ett strävt horisontellt plan och belastas av den horisontella kraften P enligt figuren. Lådan har massan m. Identifiera krafter som verkar på lådan. Obs: Krafters verkningslinjer är viktiga. Tyngdaccelerationen g är känd. b) Betrakta ett system av ändligt många krafter F i som verkar i respektive angreppspunkter r i. Definiera kraftsystemets totala kraftmoment med avseende på en godtycklig punkt och visa att för två godtyckliga momentpunkter A och B gäller den så kallade "sambandsformeln för kraftmoment". (2p) 6. a) Vad menas med begreppet "ekvimomenta kraftsystem"? b) Formulera lagen om kraftens impuls. Definiera ingående storheter. c) Härled rörelseekvationen för en partikelpendel i vertikalplanet, dvs sambandet mellan vinkelaccelerationen och vinkeln. Använd partikelmassan m och pendellängden l för denna pendel. 7. a) Bevisa momentlagen för en partikel med massa m som påverkas av en kraft F. Definiera ingående storheter. b) Formulera minst två av Keplers lagar för planetrörelser. c) Visa att en satellitrörelses transversella acceleration försvinner i en plan elliptisk bana kring jorden. Försumma kraftverkan från andra himlakroppar än jorden. 8. a) Ett rakt svängande system beskrivs av ekvationen x + c x + bx = a, där a, b och c är konstanter. För vilka värden på dessa konstanter betecknas systemet som kritiskt, respektive svagt dämpat? Ange även svängningens jämviktsläge. (2p) b) Vilka (om någon) av följande är grundstorheter i mekaniken: Kraft, acceleration, rörelsemängd, tyngdacceleration? /Thylwe
3 1. SG1130 Mekanik I, baskurs P1, M Problemlösningar (förslag) Vi inför beteckningar enligt figuren. Jämvikt på gränsen till glidning ger omedelbart: = mg och P = µmg. Momentjämvikt med avseende på cirkelcentrum ger dessutom: $ & 2 ' µ % rmg # rp) " ( sin* # rµmg = 0, dvs: sin" = 2 # $ µ. För att speciellt kunna erhålla sin" =1, krävs minst friktionstalet: µ = 1 ". 2. Lösning: I rörelseplanet (horisontellt) finns bara en normalkraft från rörets vägg(ar). Den kraften är transversell. ewton 2 (radiellt): ma r = m r " r# 2 ( ) = 0. Dvs det finns ingen radiell acelleration. ( ) =. Denna formel beskriver hur Men, ewton 2 (transversellt) säger: m 2 r " normalkraften i horisontalplanet beror av den radiella hastighets komponenten r. 3. Lösning: Farten är störst vid det minsta avståndet till jorden, dvs på avståndet 2R från jordens centrum. Där är hastigheten transversell och farten kan betecknas v A. Energiprincipen, samt banenergin för känd storaxel ger: " mgr = m 6 2 v A 2 " mgr => 2 v A = 2gR 3. Med farten v = gr blir energifördelningen något annorlunda: 3 " mgr = m # gr& % ( " mgr2, där r är det sökta avståndet från kraftcentrum. Löses detta 6 2 $ 3 ' r avstånd ut fås: r = 3R. Höjden över jordytan blir 2R. Kolla satellitens läge i figuren. Lösning med v A inte uträknad är också godkänt.
4 4. Lösning: Inför origo för ospänd fjäder. Fjäderkraften F k = "kx. Dämpningskrafter F c = "c x, samt tyngdkraften nedåt. ewtons 2:a lag: m x = mg " kx " c x. Svängningsekvationen: x + c x + k { m { m x = g. 2"# n Svängningsparametrarna är här införda i ekvationen. aturliga vinkelfrekvensen för svängningen: " n = k m. # n 2 a) Kritisk dämpning kräver " =1, så att i svängningsekvationen gäller c m = 2 k m, dvs k = c 2 4m. (2p) b) Svängningsrörelsen bestäms från den allmänna rörelsen: x( t) = ( B + Ct)e -" n t + x j, där jämviktsäget är x j = mg. Begynnelsevillkoren är x 0 k ( ) = 0, x ( 0) = 0: Då bestäms först konstanten B: B = " mg. Sedan behövs uttrycket för begynnelsehastigheten: k x # ( 0) = %" mg $ k + Ct & ( e -) nt = C + mg ' k ) n. För att detta skall kunna vara noll krävs: C = " mg k # n. Rörelsen är nu bestämd: x ( t ) = " mg k ( 1+# t n )e-# n t + mg k. Vid maxutslag blir hastigheten noll, dvs x ( t) = mg k " ( 1+" t n n )e-" n t # mg k " n e-" n t = mg k " 2 nte -" n t som blir noll när t = ". Läget vid den tiden är jämviktsläget x j = mg. Förflyttningen är alltså som mest från origo till k jämviktsläget. (svar) /Thylwe
5 Teoridelen 5a) Fritionskraft f, tyngdkraft mg och normalkraft. ormalkraften verkar på avståndet x>a räknat från vänstra, nedre hörnet. I figuren har införts en kantlängd 2b för lådans höjd. 2a P h A x mg (2b) f b) Ett kraftsystem kan alltid skrivas som ett antal krafter F j med motsvarande angreppspunkter r j (även för kraftparsmoment). I momentpunkten A mäter vi det totala momentet M A = $ r j " r A, för samma krafter. ([ ] # F j ) I momentpunkten B fås: M B = $ [ r j " r B ] # F j ( ) Skillnaden blir i detta fall: ([ ] # F j ) M A " M B = $ r j " r A " r j + r B = $ (r B " r A ) # F j = (r B " r A ) # $ F j. ( ) Detta uttryck kan lätt förenklas om vi inför totala kraften F = " F j samt relativa läget r AB = r B " r A. Sambandet blir: M A = M B + r AB " F. 6a) Kraftsystemen som är ekvimomenta har parvis lika totala moment i varje momentpunkt. Kraftsystemen har lika kraftsumma. t 1 b) Definitioner: Rörelsemängd p = mv, Kratens impuls I = " F dt. Impulslagen "p = I med "p = p ( t 1 ) # p ( t 0 ). t 0
6 c) Lösning: Med trådkraft och tyngdkraft identifierade i figuren fås ur t ex energiprincipen: 1 2 m ( l " ) 2 # mglcos" = E, där E är den totala konstanta energin. Genom att tidsderivera fås ett samband som är oberoende av hur rörelsen börjar (begynnelsevillkor). Dvs ml 2 " " + mgl" sin" = 0, som kan förenklas till rörelseekvationen (pendelekvationen): " + g sin" = 0. l 7a) Definitioner: Rörelsemängd p = mv, där v är hastigheten, rörelsemängdsmoment H O = r " p. Tids derivering ger H O = d( r " p ) = v " p + r " p dt = r " p, ty v och p är parallella. ewtons 2:a lag: p = F medför att r " p = r " F. Sammantaget fås momentlagen: H O = M O, där vi inför kraftmomentet enligt definitionen M O = r " F. b) K1: Planeterna rör sig i (plana) elliptiska banor runt solen, med solen i ena brännpunkten. K2: Planeterna rör sig med konstant sektorhastighet. K3: Omloppstiden och storaxeln i banan beror av vanrandra enligt formeln: T 2 = konst a 3, där konstanten är samma för alla planeter. c) Gravitationskraften är radiell. ewtons 2:a lag ger i transversell riktning: ma " = F " = 0, dvs a " =0. Alternativt: Dubbla sektorhastigheten: h = r 2 ". Den är konstant. Transversell acceleration: a " = r " +2r". Derivering av h ger 0 = 2r r " + r 2 " = r 2r " + r " ( ) Vi ser att den transversella accelerationen är 0, ty r är inte 0. 8a) Svängningsekvationen för dämpad svängning: x + 2"# n x + # 2 n x = a. I aktuellt fall görs identifieringar: " n = b, " = c. Alla positiva värden på b och c 2 b som satisfierar: c = 2 b (kritiskt dämpat), 0 < c < 2 b (svagt dämpat). I jämviktsläget kan massan ligga still, med hastighet och acceleration lika med 0. Detta ger ur svängningsekvationen jämviktsläget: x j = a/b. 8b) Inga av dessa. /Thylwe
7 SG1130 Mekanik-P, B, M SG1130 Mekanik I, baskurs P1, M Bedömningar OBS: Alla införda ekvationer och symboler skall motiveras!! Följande moment i typiska redovisningar av uppgifter kan leda till poängavdrag. En viss tolerans gällande moment M, B och S finns. Helhetsbedömningen av flera uppgifter kan innebära att ett poängavdrag (gällande M, B och S) drabbar bara en av flera uppgifter. M (motivering): -1p Typ: Otydliga motiveringar, motsägelsefulla ekvationer, odefinierade symboler, felaktiga definitioner. MF (missuppfattning): -1p -3p Typ: Blandar ihop olika storheters definitioner. B (beteckning): -1p Typ: Vilseledande, felaktiga beteckningar. Skalär/vektor. Komposanter i stället för komponenter etc. S (svar): -1p -3p Typ: Ofullständigt svar, ''okända storheter'' eller oförklarade beteckningar kvar i svaret, etc. L (logik): -1p Typ: Ologiska matematiska operationer. Dividerar med vektorer, fel multiplikation med vektorer. K (krafter/kinematik) : -1p Typ: Bristfällig analys av krafter/kinematik. D (dimension): -1p -2p Typ: Sortfel i svar eller viktiga ekvationer.
Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
Läs merOmtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med
Läs merTentamen i Mekanik SG1130, baskurs P1. Problemtentamen
010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt
Läs merTentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Läs merTentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten
Läs merProblemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Läs merObs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer!
1) m M Problemlösningar µ α α Lösning: Frilägg massorna: T N N F µ T Mg mg Jämvikt för M kräver T Mgsin α = 0 (1) a) Gränsfall F µ = µ N men jämvikt för m kräver: N mg cosα = 0 (2) T µ N mgsinα = 0 (3)
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v
Läs merKOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merTentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merKUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
Läs mer. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:
KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(
Läs mer= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har
Läs merTentamen i Mekanik SG1130, baskurs. Problemtentamen
013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta
Läs mer" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Läs merSG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
Läs merMer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Läs merInre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
Läs merTentamen i Mekanik SG1130, baskurs P1. Problemtentamen
011-03-17 Tentamen i Meani SG1130, basurs P1. OBS: Inga hjälpmede förutom rit- och srivdon får användas! KTH Meani 1. Problemtentamen Ett tunt hyllplan (plana) med massan m är fäst i en led (gångjärn)
Läs merKOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Läs mer" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Läs mer" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Läs merFöreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Läs merMålsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Läs merFöreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
Läs merOm den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Läs merLÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Läs merKOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
1 KOMIHÅG 3: --------------------------------- Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av
Läs merNewtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Läs merVar ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
Läs merKOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Läs merALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Läs merTentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:
Läs merNEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Läs merDefinitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,
Läs merFÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
Läs merEnda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.
KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer
Läs mer9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
Läs merÖvningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Läs mer6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Läs merMålsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter
Läs merInlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
2005-08-25 Tentamen i Mekanik 5C1107, baskurs S2. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. h 2a roblemtentamen En homogen låda står på ett strävt horisontellt plan och
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
1 KOMIHÅG 16: Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 17: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:
Läs mer9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Läs meruniversity-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Läs merKursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Läs merStelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Läs mer=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs
1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis
Läs merTFYA16/TEN :00 13:00
Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:
Läs merID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.
Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar
Läs merTentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Läs merLösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
Läs merTFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Läs merHärled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Läs merTentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Läs mer6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Läs mer(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen
Läs merAndra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Läs merIntrohäfte Fysik II. för. Teknisk bastermin ht 2018
Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål
Läs merLösningar till problemtentamen
KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står
Läs merTFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
Läs merKOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
1 KOMIHÅG 2: --------------------------------- Kraft är en vektor me angreppspunkt och verkningslinje. Kraftmoment: M P = r PA ", r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoene av om
Läs merLösningar till problemtentamen
KTH Mekanik 2007 05 09 Mekanik bk och I, 5C03-30, för I och BD, 2007 05 09, kl 08.00-2.00 Lösningar till probletentaen Uppgift : En partikel i A ed assa hänger i två lika långa trådar fästa i punkterna
Läs merMekanik II repkurs lektion 4. Tema energi m m
Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis
Läs merYTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp:
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren och Staffan Yngve ID-Kod: Program: TENTAMEN 14-01-11 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 14.00-19.00, Polacksbacken,
Läs merInstitutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse
Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment
Läs merTillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Läs merGrundläggande om krafter och kraftmoment
Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan
Läs merMekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Läs merTentamensskrivning i Mekanik - Dynamik, för M.
Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna
Läs merUppgifter till KRAFTER
Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Läs merArbete och effekt vid rotation
ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds
Läs merFuglesangs skiftnyckel och Möten i rymden. Jan-Erik Björk och Jan Boman
Fuglesangs skiftnyckel och Möten i rymden Jan-Erik Björk och Jan Boman Det sägs att Christer Fuglesang tappade en skiftnyckel under sin rymdpromenad nyligen. Enligt Keplers första lag kom skiftnyckeln
Läs merRepetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Läs merTentamen i Mekanik för D, TFYA93/TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Magnus Johansson Tentamen i Mekanik för D, TFYA93/TFYY68 Måndag 019-01-14 kl. 14.00-19.00 Tillåtna Hjälpmedel: Physics Handbook
Läs merSvar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Läs merLösningar till övningar Arbete och Energi
Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan
Läs merSvar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet
Läs mer3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
Läs mer