Andra EP-laborationen
|
|
- Ellinor Andersson
- för 5 år sedan
- Visningar:
Transkript
1 Andra EP-laborationen Christian von Schultz Magnus Goffeng Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med hjälp av Lagranges ekvationer, att skivans läge beskrivs av en ekvation liknande den för en matematisk pendel. När vi linjäriserar denna ekvation får vi en formel för periodtiden som avslöjar att periodtiden enbart beror på skivans massa, dess tröghetsmoment kring masscentrum och avståndet mellan rotationscentrum och masscentrum. Dessutom är periodtiden för stora avstånd mellan skivans masscentrum och rotationsaxeln samma som för en matematisk pendel.
2 Innehåll 1 Inledning Materiel 3 Teoretisk analys av problemet 4 Metodik 4 5 esultat 8 6 Diskussion 8 A Satsen för parallella axlar 9 B Härledning av (4) med Lagranges ekvationer 10 1
3 otationsaxel y x s θ Tyngdpunkt m g 1 Inledning Figur 1: Uppställning och beteckningar Vi utförde den här laborationen i syfte att nå en djupare kunskap kring svängande skivor. För att uppnå detta börjar vi med en teoretisk analys av problemet som vi sedan verifierar experimentellt. Materiel Vi använde oss av några spånskivor, en upphängningsanordning till dessa, en linjal, en våg och ett stoppur. 3 Teoretisk analys av problemet Vi har valt att lägga fokus på den teoretiska grunden i detta problemet, så nedan följer en analys av problemet som underlättar den exprimentella delen. Om vi sätter rotationscentrum i origo och låter s (t) beteckna masscentrums 1 lägesvektor vid tiden t (se figur 1, notera att s är konstant), då gäller för 1 Eller egentligen tyngdpunkten, men för våra syften kan gravitationsfältet betraktas som homogent, varvid tyngdpunkten sammanfaller med masscentrum.
4 tyngdkraftens vridmoment med avseende på origo M = m g s (1) där m är skivans massa. Notera att s (t) alltid befinner sig i samma plan, så att M kommer alltid vara ortogonal mot planet. Det räcker alltså att betrakta en komponent i M, dess z-komponent. Hädanefter låter vi M beteckna M- vektorns z-komponent. Vi skriver s med cylindriska koordinater, där vi låter θ(t) vara vinkeln mellan s (t) och negativa y-axeln: Ekvation (1) ger då: Vidare gäller: s = s ( sin θ, cos θ, 0) M = sin θ () M = I θ (3) Om vi sätter () och (3) lika får vi en fin differentialekvation: θ = sin θ (4) I Om man istället betraktar skivan som ett system av små masselement och använder Lagrangesk mekanik på detta system för att låta antalet masselement gå mot får man samma resultat, för detaljerna se appendix B på sidan 10. Om vi nu betraktar små utslagsvinklar kan vi göra approximationen sin θ θ och får då: θ = µ θ där µ = (5) I som har lösningen θ(t) = C sin(µt+ϕ) där C och ϕ bestäms av initialvärdena. Om vi nu undersöker periodiciteten hos θ har vi att µ = 0 ger θ(t) = θ(0)t + θ(0) som svarar mot att skivan snurrar runt sitt masscentrum och har därmed ingen periodicitet. Men om µ 0 så har funktionen θ uppenbarligen perioden T = π µ = π I Sats 1, appendix A, ger att I = I c + ms där I c är tröghetsmomentet vid rotation kring masscentrum. Sammanfattningsvis har vi att för en periodisk lösning till (4) så gäller att: I c + ms T = π (6) Denna ekvationen säger också att perioden beror bara på masscentrums avstånd till rotationscentrum. Våra exprimentella resultat tyder också på detta. 3
5 T/s,5 1,5 I T = π c+ms där I c = 0,0357 kg m 1 0,5 s/m 4 Metodik 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 Figur : Periodtiden för den vita plattan. Vi monterade plattorna, som var försedda med hål, på en upphängningsanordning som lät plattan rotera fritt kring upphängningspunkten (friktion försummas). Vi mätte avståndet s från upphängningspunkten till plattans tyngdpunkt, som vi enkelt fick fram genom att balansera plattan horisontellt på ett finger. Därefter mätte vi för olika avstånd s tiden för 10 perioder, när plattan fick svänga med liten amplitud. Vi mätte för tre olika plattor. En vit platta (se tabell 1), en oval platta (tabell ) som vi tog många värden för, och en cirkulär platta (tabell 3) för att enkelt kunna jämföra med teoretiskt framräknat tröghetsmoment. Ur ekvation (6) kan vi lösa ut I c : I c = T 4π ms Vi kan därmed associera ett I c -värde med varje mätpunkt. Genom att ta ett medelvärde på dessa kan vi få en god uppfattning av hur stort tröghetsmomentet vid rotation kring masscentrum är för varje platta. Det gör det möjligt att rita grafer av T som en funktion av s enligt ekvation (6), se figurer 4. Där framgår även vilka I c -värden vi har fått. 4
6 Tabell 1: Periodtiden för den vita plattan. s m T s 0,09,53 0,034,39 0,05,00 0,071 1,74 0,10 1,51 0,107 1,38 0,143 1,6 0,153 1,38 0,33 1,36 0,317 1,6 0,317 1,7 0,755 1,87 0,755 1,87 T/s 3,5 3,5 1,5 1 0,5 I T = π c+ms där I c = 0,07 kg m s/m 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 Figur 3: Periodtiden för oval platta, stor mätserie. 5
7 Tabell : Periodtiden för den ovala plattan, stor mätserie. s m T s 0,011 3,047 0,03,553 0,036,081 0,049 1,8 0,06 1,760 0,074 1,535 0,087 1,466 0,100 1,400 0,11 1,359 0,15 1,319 0,138 1,306 0,150 1,88 0,163 1,81 0,175 1,309 0,188 1,91 0,01 1,69 0,14 1,66 0,6 1,81 0,39 1,81 0,5 1,93 0,65 1,300 0,77 1,353 0,90 1,38 0,309 1,388 0,500 1,550 0,573 1,653 0,617 1,678 0,684 1,744 0,767 1,835 Tabell 3: Periodtiden för den cirkulära plattan. s m T s 0,040,109 0,073 1,57 0,117 1,375 0,155 1,310 0,193 1,78 0,31 1,88 0,70 1,315 6
8 Tabell 4: Plattornas massor Platta Massa i kg Vit platta 0,76 kg Oval platta 0,639 kg Cirkulär platta 0,691 kg 3,5 3,5 T/s I T = π c+ms med teoretiskt värde på I c. I c = 0,071 kg m I c+ms T = π där I c = 0,088 kg m 1,5 1 0,5 s/m 0,05 0,1 0,15 0, 0,5 0,3 0,35 Figur 4: Periodtid för cirkelplatta och jämförelse med teoretiska värden 7
9 För cirkelskivan kan vi också integrera oss fram till ett teoretiskt värde på tröghetsmomentet. Efter lätt räkning fås I c = mr där r är skivans radie, som uppmättes till 0,80 m. Detta ger ett I c -värde som ligger väldigt nära det experimentellt bestämda, se figur 4. 5 esultat Pendelns svängningar bestäms av θ = I sin θ För små amplituder ger detta följande formel för periodtiden: I c + ms T = π Detta stämmer mycket väl överens med experimentet, se figurer 4. Notera hur ett helt teoretiskt I c -värde i figur 4 ger mycket god överensstämmelse med experimentet. 6 Diskussion Vi ser tydligt i (6) att för små såväl som stora s så är periodtiden stor. För små s så är T (s) = O(s 1 ). För stora s är T (s) = O(s 1 ) och funktionen närmar sig den linjäriserade matematiska pendelns svängningstid. Faktum är att formeln för den matematiska pendelns svängningstid kan anses vara ett specialfall av vår formel: den matematiska pendeln betraktar punktmassor, varvid I c = 0. Vi kan konstatera att problemet lämpar sig ypperligt för teoretisk behandling, och en god förståelse kan uppnås för förloppet. Det är tveksamt om detta hade kunnat uppnås genom en renodlat experimentell approach. 8
10 A Satsen för parallella axlar Sats 1 Om tröghetsmomentet kring en rotationsaxel genom masscentrum på en kropp är I c, ges tröghetsmomentet kring en godtycklig annan axel parallell med den första av I s = I c + m s där m är kroppens massa och s är avståndet mellan axlarna. Bevis. Låt s (vinkelrät mot axlarna) peka från axeln genom masscentrum, till den andra axeln, vars tröghetsmoment vi söker. Låt r c vara kortaste vektorn från axeln genom masscentrum till en godtycklig punkt på kroppen. Låt r s vara kortaste vektorn från andra axeln till samma punkt. Notera att r c och r s kommer ligga i samma plan: vinkelrätt mot axlarna. Man inser snart att r c = s + r s (7) Tröghetsmomentet definieras allmänt som I = r dm där r är avståndet till rotationsaxeln. Vi har då: I c = r c dm I s = r s dm Vi har enligt (7): r s = r c s = ( r c s) ( r c s) = r c + s s r c (8) Om vi sedan utnyttjar (8) för att beräkna I s : I s = r s dm = r c dm + s dm = I c + m s s r c dm Därmed är beviset nästan klart. Återstår endast att visa s r c dm = 0 9 s r c dm =
11 Eftersom s är en konstant vektor, så vi kan skriva om vänsterledet som s r c dm Men detta är ju endast koordinaterna för masscentrum i planet som ligger ortogonalt mot rotationsaxeln för kroppen och om vi lägger origo i masscentrum så är s r c dm = 0 och satsen är bevisad. B Härledning av (4) med Lagranges ekvationer Lagrangianen L för ett system är definierat som L = T V där T är den kinetiska energin för systemet och V är den potentiella energin för systemet. Vi väljer ett fixt masselement som bildar vinkeln θ mot den negativa y-axeln. Vi delar upp skivan i N stycken masselement. Vidare väljer vi ett fixt masselement som bildar vinkeln θ mot den negativa y-axeln. Låt koordinaten för det i:te masselementets masscentrum vara (x i,y i ) och i polära koordinater (s i,ϕ i ); låt den ha massa m i och tröghetsmoment I i med avseende på rotationsaxeln. Vi uttrycker Lagrangianen i de generaliserade koordinaterna (s i,θ i, θ i ) = (s i,θ + ϕ i, θ), då gäller att: T = V = = I i θ = I θ s i m i g cos(θ + ϕ i ) = s i m i g [cos θ cos ϕ i sin θ sin ϕ i ] = m i g[y i cos θ x i sin θ] (10) Nu behöver vi Lagranges ekvationer: Sats Om L är Lagrangianen för ett system med de generaliserade koordinaterna (q i, q i ) så uppfyller L följande differentialekvation: d L L = 0 dt q i q i 10 (9)
12 För vårt system så är d dt L = I θ och θ Så Lagranges ekvationer blir: N L q = m i g[y i sin θ + x i cos θ] I θ = m i g[ y i sin θ x i cos θ] = g sin θ m i y i + g cos θ m i x i Men här ser vi att då vi låter N kommer de söliga summorna att gå mot koordinaterna för masscentrum multiplicerat med massan, resten är ju oberoende av i och N och kommer att bevaras. Så vi får den enklare ekvationen I θ = my m g sin θ + mx m g cos θ där (x m,y m ) är skivans masscentrum då θ(t) = 0. Då ser vi att om vi väljer det fixa masselementet att ligga i masscentrum och masscentrum ligger på avståndet s från rotationsaxeln så är (x m,y m ) = (0, s) och alltså är det samma som ekvation (4). eferenser [1] Engelska Wikipedia, [] C. Nordling, J. Österman, Physics Handbook of Science and Engineering, Studentlitteratur
Rotationsrörelse laboration Mekanik II
Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,
Läs merLabbrapport svängande skivor
Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan
Läs merInstitutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse
Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment
Läs merLösningsskiss för tentamen Mekanik F del 2 (FFM521/520)
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra
Läs merKapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
Läs mer= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Läs merStelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
Läs merFöreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Läs merMekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av
Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk
Läs merLaborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel
Laborationsrapport Ballistisk pendel Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A 22 april 2017 1 1 Introduktion Den här laborationen genomförs för att undersöka en pils hastighet innan den
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Läs merLÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Läs merArbete och effekt vid rotation
ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds
Läs mer9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Läs merMekanik F, del 2 (FFM521)
Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen
Läs merMekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Läs merTentamensskrivning i Mekanik - Dynamik, för M.
Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Läs merLösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)
Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:
Läs mer" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Läs merRoterande obalans Kritiskt varvtal för roterande axlar
Roterande obalans Kritiskt varvtal för roterande axlar Rotation, krit. varvtal, s 1 m 0 Roterande obalans e Modeller för roterande maskiner ej fullständigt utbalanserade t ex tvättmaskiner, motorer, verkstadsmaskiner
Läs merMEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel
Läs merBallistisk pendel laboration Mekanik II
Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den
Läs merTentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
Läs merTENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.
TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna
Läs merOscillerande dipol i ett inhomogent magnetfält
Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merLösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)
Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen
Läs merInlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Läs merMekanik SG1108 Mekanikprojekt Dubbelpendel
Mekanik SG1108 Mekanikprojekt Dubbelpendel Studenter: Peyman Ahmadzade Alexander Edström Robert Hurra Sammy Mannaa Handledare: Göran Karlsson karlsson@mech.kth.se Innehåll Sammanfattning... 3 Inledning...
Läs merLabboration 2. Abbas Jafari, Julius Jensen och Joseph Byström. 22 april Rotationsrörelse
Labboration 2 Rotationsrörelse Abbas Jafari, Julius Jensen och Joseph Byström 22 april 2017 1 1 Introduktion Rotationsrörelser är mycket vanligt i ingenjörsmässiga sammanhang. En kropp har egenskapen rörelsemängdsmoment
Läs merRepetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Läs merSVÄNGNINGSTIDEN FÖR EN PENDEL
Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt
Läs merOrdinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
Läs merKarta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår
Läs merVar ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 21 maj 2012 klockan 14.00-18.00 i M. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsstrategi: Använd arbete-energi principen
Läs merTentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Läs merID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.
Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Läs merTentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merMöjliga lösningar till tentamen , TFYY97
Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum
Läs merMMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Läs merÖvningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Läs merLösningsförslag till problem 1
Lösningsförslag till problem Lisa Nicklasson november 0 Att beskriva trianglar Vi ska börja med att beskriva hur trianglar kan representeras i x, y)-planet Notera att varje triangel har minst två spetsiga
Läs mer" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Läs merNewtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har
Läs merFöreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot
1 Föreäsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap 3113 Komihåg 8: Tröghetsmoment = r dm = x + y dm m m Kinetisk energi för roterande stet system: T rot = 1 Röresemängdsmomentets zkomponent:
Läs merTillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 16 augusti 2010 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svar på de sex deluppgifterna: SFF SFS.
Läs merTentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Läs merTFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Läs merMekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297
Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda
Läs merdr dt v = Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6)
1 Viktiga relationer: Stela kroppens allm. rörelse (Kap. 6) Tidsderivata av en roterande vektor För en roterande vektor A, vars norm A är konstant, roterande runt vektorn ω gäller da = ω A. (1) dt Som
Läs merENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet
Läs merAnalytisk mekanik för MMT, 5C1121 Tentamen, , kl
Kung Tekniska Högskoan 4 Institutionen för Mekanik Anaytisk mekanik för MMT, 5C Tentamen, 4, k 4.-8. Räkneproem Uppgift : En pende estår av en sma homogen stav, av ängd och massa m. Den kan svänga kring
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Läs merKursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
Läs merHärled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Läs merP Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Läs merOm den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Läs merMålsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merLösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
Läs merMEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Läs merLaboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver
Läs merNEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Läs merSvar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Läs merDär a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att
Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet
Läs merLaboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Läs merMATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Läs mere 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
Läs merVektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.
Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B
Läs mer4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Läs merÖvningsuppgifter till Originintroduktion
UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft
Läs merIntegraler av vektorfält Mats Persson
Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på
Läs merChalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
Läs merOctober 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.
Läs merLÄRARHANDLEDNING Harmonisk svängningsrörelse
LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 7 januari 2012 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4
Läs merTentamen i Mekanik II
Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd
Läs merMekanik FK2002m. Rotation
Mekanik FK2002m Föreläsning 9 Rotation 2013-09-20 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 9 Introduktion Idag ska vi börja titta på rotation. - Stela kroppar som roterar kring en fix rotationsaxel.
Läs merUPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander TENTAMEN 11-06-03 MEKANIK II 1FA102 SKRIVTID: 5 timmar,
Läs merEnda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.
KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer
Läs merc d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)
1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab
Läs mer