" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
|
|
- Ulla-Britt Isaksson
- för 8 år sedan
- Visningar:
Transkript
1 KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar Rak, uppbromsande rörelse: Svängningsrörelse:
2 Likformig cirkelrörelse: 2 Pendelrörelse: För att förstå accelerationen vid likformig cirkelrörelse och vid pendelrörelse har man hjälp av den naturliga uppdelningen a = v e t + v 2 " e n. -När farten (v) är konstant eller maximal (alternativt minimal) försvinner tangentkomponenten, ty då är derivatan v = 0. -När farten är noll försvinner normalkomponenten.
3 Problemlösning: 3 Problem 1. Antag att rörelsen är rak och att accelerationen beror av läget. Ett exempel kan vara a = bx, där b är en konstant. För att bestämma hastigheten i ett läge x, kommer att behövas begynnelsevillkor. Red ut detta! Lösning: För att se detaljerna hur detta kommer sig utgår vi från definitionen: a = dv. Men tidsderivatan passar inte detta dt problem, utan vi måste byta tiden mot läget: dv dt = dv dx dx dt = v dv dx. Då får vi det matematiska problemet: Sök v från relationen v dv = bx! Vänster och högerled kan nu ses som derivator av en dx okänd ekvation, nämligen (primitiva funktioner): v 2 2 = b x 2 + C, där C kan vara vad som helst som är konstant. 2 Men det räcker att veta v i något läge, t. ex. då x=0. Låt detta värde vara v 0. Då får vi C = v 0 2. Sedan återstår endast att lösa v 2 som funktion av x. Man får: v = bx 2 + v 0 2.
4 Dynamik kraft-rörelse (orsak-verkan) NEWTONS 3 LAGAR för partiklar 1. En 'fri' partikel förblir i vila eller rätlinjig rörelse. v = konstant vektor 2. ma = F 3. Krafter uppstår i par så att summan är noll. Inertialsystem koordinatsystem som inte roterar och inte accelererar. Där är Newtons lagar giltiga! 4 Det finns många inertialsystem Byte av inertialsystem innebär (från det högra koordinatsystemet till det vänstra): Ingen ändring i uppmätta accelerationer. a = a ' Konstant skillnad i uppmätta hastigheter. v = v ' +V, där V = R.
5 KRAFT-RÖRELSE och massans betydelse. (a) (b) 5 m Mg m=150 kg M=200 kg Problem: Bestäm den vertikala accelerationen för 150-kilos cylindern i de båda illustrerade fallen. Bortse ifrån friktionen och trissornas massor. Lösning: Fall a) Friläggning av båda cylindrarna tillsammans med Newtons 2:a lag. Kom ihåg att båda cylindrarnas rörelser hänger ihop med en otänjbar tråd. T (a) T x mg Mg " m x = T # mg " M x = Mg # T Summera ekvationerna: ( M + m) x = ( M " m)g Lös ut accelerationen: x = M " m M + m g.
6 6 Fall b) Friläggning av den enda cylindern resulterar i en enda ekvation. Mg (b) x mg " m x = Mg # mg Lös ut accelerationen x = M " m m g Diskutera massans tröghet: En del av massans tyngdkraft går åt till massans egen acceleration.
7 Newtons 2:a lag för krokig rörelse 7 Problem 1. En pendelmassa m hänger vertikalt ner från innertaket på en bil som kör med konstant fart v över ett backkrön. Spännkraften T i tråden mäts och är känd på toppen av backkrönet. Bestäm backkrönets krökningsradie ". Lösning: Uppe på krönet gäller Newtons 2:a lag. Kraftbilden avslöjar att alla krafter är vertikala. I banans normalriktning gäller: m v2 = mg # T. (1) " Observera att accelerationen är helt i normalriktningen. a = v e t + v2 " e n = v 2 " e. n Löser ut krökningsradien ur (1): " = Vad händer om T=0? mv2 mg # T.
8 8 Problem 1: En liten kula med massa m är från början upphängd i två vajrar. Om en vajer plötsligt kapas bestäm förhållandet (kvoten) k mellan spänningen omedelbart efter respektive före kapningen i den återstående vajern. Lösning: Före kapning har vi jämvikt. T 0 T 0!! mg " 2T 0 sin# $ mg = 0, dvs T 0 = mg 2sin". Efter kapning har vi inte jämvikt. Omedelbart efter ser det ut så här: T 1 R!! mg sin! mg Kulan ska just påbörja en typ av cirkelrörelse. Sätt upp Newtons 2:a lag i radiell riktning (polära koordinater): m R " R# 2 ( ) = "T 1 + mgsin$
9 Men det finns ingen begynnelserörelse och ingen avståndsacceleration (vajern kan inte förlängas), varför vänsterledet i ekvationen blir noll. Alltså T 1 = mgsin" Förhållandet blir: k = T 1 = 2sin 2 ". Numeriskt: " k = 2$ 1% ' 2 T 0 # 2& = Problem: Betrakta en liten lastbil med massa m=10 ton, som färdas med konstant fart v = 30 m/s över ett backkrön. Krökningsradien vid backkrönet är 100 meter. Beräkna normalkraften på lastbilen från vägen vid backkrönet. Lösning: Identifiera krafterna på lastbilen. Tyngdkraft och normalkraft och möjligen friktion. Rita en bild där lastbilen förenklas till en punkt. Accelerationen beskrivs i det naturliga koordinatsystemet av a = v e t + v 2 " e n, men v = konstant " a = v 2 # e n Ur Newtons 2:a lag: e n : m v 2 $ 2 v ' = mg# N, dvs N = m& g " ) " % # (
10 KOMIHÅG 3: Accelerationens riktningar för typiska rörelser Använd komponenter i Newton 2: a = v e t + v 2 " e, F = F e + F e. n t t n n Föreläsning 4: Fler tillämpningar av Newtons lagar 10 T 1 R!! mg sin! mg Problem 2: En liten kula med massa m är fäst i en sträckt tråd med längd L. Kulan släpps från ett läge som beskrivs av vinkeln " = #, och en pendelrörelse påbörjas. Bestäm vinkelaccelerationen i början av denna rörelse. Lösning: Kraftbilden är som i Problem 1. Sätt upp Newtons 2:a lag i transversell rörelseriktning (motsvarande vinkelökningen). Den riktningen är ortogonal mot tråden och trådkraften: ml " = mgcos". I början är " = #. Vinkelaccelerationen blir " = g cos#. (Svar) L
11 11 Problem: En kula med massan m kan glida utan friktion längs en cirkelbåge med radien R. Cirkelbågen roterar med konstant vinkelhastighet " kring en fix vertikal axel. Bestäm den vinkel " för vilken kulan är i vila relativt cirkelbågen. Lösning: Kraftanalys: Tyngdkraft och normalkraft från bågen, Kinematik: Horisontell cirkelbana, konstant vinkelhastighet. Newtons 2:a lag: Ingen rörelse i vertikal riktning: " 0 = N cos# $ mg. Horisontell cirkelrörelse: e r : m "Rsin#$ 2 ( ) = "Nsin#. Eliminera normalkraften: mr " 2 = mg, för sin" # 0 cos# Lös vinkeln: cos" = g R #. 2 eller sin" = 0.
12 Coulomb (torr) friktionskraft uppstår vid kontakt mellan två fasta kroppar: N F µ P 12 mg Friktionskraften F µ motverkar rörelse till en viss gräns: -Friktionstalet är en materialkonstant. Problem: En bil med massan m befinner sig med farten v på ett backkrön med krökningsradien R då föraren tvingas bromsa så att hjulen låses och bilen glider mot vägbanan. Bestäm den momentana fartändringen per tid om friktionstalet är µ. Lösning: Kraftanalys: Full friktion i tangentriktningen, Normalkraft och tyngdkraft i huvudnormalriktningen. Kinematik: momentan cirkelrörelse i vertikalplanet. e t : mv = "µn, e n : m v 2 R = mg" N Eliminera normalkraften på bilen: # dvs v = "µ g " v 2 & % (. $ R ' Vad kan hända här?? # m v = "µ mg " m v 2 & % (, $ R '
13 13 ENERGI-RÖRELSE Energi är ett mycket teoretiskt begrepp som inte kan observeras, medan rörelse kan observeras med ögonen. -Energibegrepp: -Kinetisk energi. T = 1 2 m v 2 -Kraftens effekt (momentant). P = F v Problem: En jord susar fram med 300 m/s i en approximativt cirkelformad bana kring ett gravitationscentrum (solen). Hur stor effekt har solens gravitation på jordens rörelse? Lösning: Kraften är approximativt radiell och rörelsen är transversell, dvs ortogonala riktningar. Alltså (approximativt) ingen effekt. -Kraftens arbete. U 0"1 = t 1 # Pdt. t 0 Härledning av energisamband för rörelse och kraft: - Lagen om Effekten Def: T = 1 2 m v 2 = 1 2 m v v ( ) Tidsderivera: T = 1 2 m v v + v v ( ) = ma v = F v = P, ty def: v = a och Newtons 2:a lag: F = ma, samt def av effekten P. Alltså: T = P (Effektlagen) - Lagen om Arbetet
14 Def arbete: U 0!1 = t 1" t 0 Pdt 14 Använd Effektlagen: U 0!1 = t 1" T dt = T 1! T 0 t 0 dvs ändring av kinetisk energi är lika stor som krafternas arbete T 1 " T 0 = U 0"1 (Arbetslagen) Problem: En bil med massan m körs med konstant horisontell hastighet. Farten är v och luftmotståndet beskrivs av den viskösa friktionskraften L = cv, där c är en känd, konstant storhet. - Bestäm drivkraften F som bilmotorn presterar. Svar: F=cv. - Bestäm drivkraftens effekt P. Svar: P = cv 2. - Hur mycket större blir farten om effekten fördubblas? Svar: Ny fart v. Ny drivkraft och nytt luftmotstånd. cv' 2 = 2cv 2 " v'= 2v. Farten ökar med "v = 2 #1 ( )v.
15 Arbete och lagrad (potentiell) energi 15 Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt, t 0 enl definition av effekten. Med definitionen av hastighet v = dr dt, fås t 0 ett alternativt uttryck: U 0"1 = r 1 # F dr. (kraftens arbete längs en väg i rummet). r 0 Om arbetet är oberoende av vägen har vi en s k konservativ kraft. Den kraften ger oss möjlighet att definiera energinivåer i rummet, s k lägesenergier! Lägesenergierna beskrivs av kraftens potentiella energi! Definition: --Den konservativa kraftens potentiella energi: ( ) = " F dr V r r #, där r ref är en fix referenspunkt som kan väljas efter r ref behag! De viktigaste konservativa krafterna är tyngdkraft, gravitation och fjäderkraft. En konservativ krafts arbete kan beräknas med hjälp av potentiella energier enligt: U 0"1 = V ( r 0 ) #V ( r 1 ). Tyngdkraftens potentiella energi: ( ) = " "mge z V r r r ref ( ) dr # = mgz + konst. Fjäderkraftens potentiella energi: ( ) = " "k r " l V r r ( ) dr # ( )e r = k 2 ( r " l)2 + konst r ref
16 Konstanterna blir olika för olika val av referenspunkt. Energiprincipen (gäller inte alltid) - Mekanisk energi (definition): 16 E = T + V Om det inte finns någon friktion bevaras den mekaniska energin: (EP) T 1 + V 1 = T 0 + V 0 Bevis: För en konservativ kraft gäller arbetslagen: T 1 " T 0 = U 0"1. Definitionen av arbetet är en integral som kan delas upp i två delarmed hjälp av en godtyckligt vald punkt r ref. U 0"1 = r 1 r 0 r 1 # F dr = " # F dr + # F dr r 0 r ref r ref = V 0 "V 1, där definitionen av potentiell energi använts. Med denna omskrivning av arbetet fås T 1 " T 0 = V 0 "V 1, som i sin tur kan skrivas som energiprincipen (EP).
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Läs merNEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Läs merKOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Läs merALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Läs mer" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Läs mer= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Läs merInre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
Läs merDefinitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
Läs merKursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Läs mer. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:
KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Läs merKUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
Läs merMer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Läs merOm den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Läs merTentamen i Mekanik SG1130, baskurs P1. Problemtentamen
010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt
Läs merOmtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block
Läs meruniversity-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Läs mer=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs
1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis
Läs merFöreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v
Läs mer6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Läs merMekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Läs merIntroduktion till Biomekanik, Dynamik - kinetik VT 2006
Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,
Läs mer9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Läs merVar ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
Läs merProblemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
Läs merTentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Läs merFÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
Läs merObs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer!
1) m M Problemlösningar µ α α Lösning: Frilägg massorna: T N N F µ T Mg mg Jämvikt för M kräver T Mgsin α = 0 (1) a) Gränsfall F µ = µ N men jämvikt för m kräver: N mg cosα = 0 (2) T µ N mgsinα = 0 (3)
Läs merÖvningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
Läs mer" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Läs merKOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Läs merTentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten
Läs mer9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
Läs merTFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Läs merTillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Läs merKomihåg 5: ( ) + " # " # r BA Accelerationsanalys i planet: a A. = a B. + " # r BA
1 Föreläsning 6: Relativ rörelse (kap 215 216) Komihåg 5: ( ) Accelerationssamb: a A = a B + " # r BA + " # " # r BA Accelerationsanalys i planet: a A = a B " d BA # 2 e r + d BA # e # Rullning på plan
Läs mer6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Läs merTentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Läs merRepetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Läs merFöreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Läs merKOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Läs merTentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs mer9, 10. TFYA15 Fysikaliska modeller VT2019 Partikelkinetik-energi Magnus Johansson,IFM, LiU
9, 10 Kulkanor Två kulor åker friktionsfritt nedför olika kanor. Vilken kula kommer ner till kanans slut först? Vilken kula har högst fart vid kanans slut? h A B Fredrik Karlsson, 9 W = F r Exempel: Partikel
Läs merFöreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
Läs merStelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
Läs merAndra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Läs merIntrohäfte Fysik II. för. Teknisk bastermin ht 2018
Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål
Läs merMålsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Läs merSG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
Läs merÖvningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
Läs merTFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Läs merRepetition Mekanik, grundkurs
Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet
Läs merTFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har
Läs mer.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
Läs merTentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!
2015-06-08 Tentamen i Mekanik I SG1130, baskurs P1 och M1. KTH Mekanik OBS: Inga hjälpmede förutom rit- och skrivdon får användas! Problemtentamen 1. Ett homogent halvcylinderskal hålls i jämvikt på ett
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Läs mer3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
Läs merTentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Läs merTFYA16/TEN :00 13:00
Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,
Läs mer7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
Läs merFöreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A
1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet
Läs merInlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
Läs merTentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:
Läs merVSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Läs merMekanik FK2002m. Kinetisk energi och arbete
Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång
Läs merMekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Läs merMålsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta
Läs merTentamen i Mekanik SG1130, baskurs. Problemtentamen
013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på
Läs merINSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 2. Friktionskraft och snörkraft
INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 2 Krafter och Newtons lagar Friktionskraft och snörkraft Uppsala 2015-09-29 Instruktioner Om laborationen: Innan ni lämnar labbet: Arbeta
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med
Läs merSolsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Läs merRelativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi
Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten
Läs merTentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Läs mermg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel
Läs merLÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Läs merMöjliga lösningar till tentamen , TFYY97
Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.
Läs merm 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20
KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)
Läs merLösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
Läs merKapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
Läs merBiomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen
Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande
Läs merBiomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
Läs merBasala kunskapsmål i Mekanik
Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,
Läs merLufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.
Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden
Läs merII. Partikelkinetik {RK 5,6,7}
II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar
Läs mer