Introduktion till Biomekanik, Dynamik - kinetik VT 2006
|
|
- Stina Eliasson
- för 6 år sedan
- Visningar:
Transkript
1 Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad, vi kommer här endast att föra enklare resonemang och räkna på enkla exempel. Huvudavsnitt och huvudbegrepp i kinetiken: Kraft acceleration, för bestämning av momentana krafter (krafter verkande under ett kort ögonblick). Impuls rörelsemängd, där kraften verkar under en viss tid. Arbete energi, där kraften verkar över en viss sträcka. De tre huvudavsnitten behandlar olika sätt att lösa kinetiska problem och kan användas för både translations- och rotationsrörelser. 1
2 I. Translationskinetik En obalanserad kraft på en kropp ger upphov till en rörelseändring enligt F = m a Accelerationens storlek för en viss kraft beror på massans storlek: massan utgör en kropps inneboende motstånd mot att ändra sitt rörelsetillstånd. Den resulterande kraften ΣF och accelerationen a är riktade åt samma håll. Det är med andra ord en vektorekvation! Dessutom gäller, som i statiken, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En kropp utan yttre kraftpåverkan förblir i sitt tillstånd av vila eller likformig, rätlinjig rörelse.. Accelerationslagen: En kropp som påverkas av kraften F får en acceleration a sådan att F = m a, där konstanten m är kroppens massa. Eller: Ändringen per tidsenhet av en kropps rörelsemängd är proportionell mot den verkande kraften och ligger i dennas riktning. 3. Lagen om verkan och motverkan: Mot varje kraft svarar en annan lika stor och motsatt riktad kraft, så att de ömsesidigt mellan två kroppar verkande krafterna alltid är lika stora och motsatt riktade.
3 Under ett bromstest bromsas en bil från hastigheten 100 km/h till stillastående på sträckan 50 m enligt figur. Om alla fyra hjulen bidrar med lika stor bromskraft, beräkna hur stor bromskraft F μ som verkar på vart och ett av hjulen. Antag att den 1500 kg tunga bilen stannar in med konstant retardation. (F μ =894 N) I en hiss står en man med massan m på en våg som har en skala som mäter belastningen direkt i N (Newton). Hur stor belastning kan man läsa på vågen under den uppåtriktade accelerationen a y = m/s om mannen väger 80 kg? F Hur stor blir belastningen om accelerationen a y är riktad nedåt istället? Jämför förhållandena med de som uppträder då t.ex. en störtloppsåkare passerar en svacka med hög hastighet! (Hiss uppåt; N = m(g+a y ), hiss nedåt; N = m(g-a y )) 3
4 Avlastning belastning Avlastning F = mg N ma ned Belastning F = mg + N ma upp Figur 65: Jämvikt, dvs. Σ F = 0. Ingen resulterande kraft, ingen acceleration: F N = F G = mg Figur 66: Nedsjunkning mot nigsittande: I första fasen acc. nedåt; normalkraften F N minskar (underlaget avlastas). I andra fasen acc. uppåt (inbromsning); normalkraften F N ökar (underlaget belastas). Figur 67: Uppåtresning till stående (omvänt mot föregående): I första fasen acc. uppåt; normalkraften F N ökar (underlaget belastas). I andra fasen acc. nedåt (inbromsning); normalkraften F N minskar (underlaget avlastas). Förekommer tex. vid utförsåkning! 4
5 En utförsåkare startar från vila i en backe med 40 o lutning enligt figur. Efter t =,58 sek passerar han en punkt 0 m längre ner i backen. Bestäm hur stor friktionskoefficienten μ mellan snö och skidor är. Bortse från luftmotståndet. (μ = ) Centripetalkraft Centripetalkraft är den kraft som måste till för att en kropp ska röra sig i en cirkulär bana. Kraften är förknippad med den radiellt riktade komponenten av accelerationen, dvs. a R. Den radiellt riktade accelerationen a R beräknas ur formeln a R v = = r ω r Ur Newtons lag får vi då följande uttryck för centripetalkraften F C ( = m ω ) v F = m a FC = m ar = m r r 5
6 I en allmän rörelse, där banan följer ett ibland krökt spår och en ibland rak linje, ska man i uttrycket för den radiella accelerationen sätta in den krökningsradie som gäller i den aktuella punkten. Låt oss anta att kurvan i figuren nedan beskriver en del av ett slalomåk Om t.ex. r är krökningsradien för kurvan vid punkt B ser kraftekvationerna ut på följande sätt för en åkare med massan m i det läget: F F t n = ma t = ma n v = m r = mrω där v är åkarens hastighet i B och ω är vinkelhastigheten runt den tänkta cirkelns centrum. Riktningarna n och t i figuren ovan står för normal- respektive tangentialriktning i det aktuella läget. Det går alltså åt en kraft F n (mellan skidorna och snön) för att åkaren ska följa kurvans krökning vid exempelvis B! I exemplet nedan tvingar ett snöre pucken att följa en cirkelbana genom att hela tiden dra med centripetalkraften S i normalens riktning. 6
7 Alternativt kan snöret ersättas med en hand som med centripetalkraften F tvingar pucken att följa cirkelbanan. För centripetalkrafterna i de båda fallen gäller förstås att de är lika stora, dvs. att F = S (förutsatt att rörelsen sker med samma hastighet och att radien är densamma). Resultatet blir detsamma i båda fallen, pucken följer en cirkelrund bana på grund av yttre krafter som tvingar fram en radiell acceleration. Kom ihåg att rörelse i en krökt bana alltid kräver en acceleration tvärs rörelseriktningen, dvs. i rörelsens normalriktning, och att det krävs en kraft för att åstadkomma den accelerationen! (F C = ma R ). Finns det verkligen inte centrifugalkrafter? Om det inte finns centrifugalkrafter, vad är det då för en kraft som föraren av bilen känner av under kurvan? Vilken kraft är det som får korgarna att slungas ut under rotationen? 7
8 Vi bestämde i förra avsnittet släggans radiella acceleration till a R = 35,1 m/s. Hur stor blir dragkraften i händerna om släggan väger 7,6 kg? (F = 55 N) När en skidåkare svänger runt en slalomkäpp åker han under ett ögonblick i en cirkelbana med radien 15 m enligt figur. Om åkaren väger 70 kg, och han har en hastighet av 10 m/s, hur stor inåtriktad kraft måste han då åstadkomma med skidorna? (F = 467 N) 8
9 I ett avsnitt av en skidbacke finns formationer enligt figur. Om en 75 Kg:s skidåkare kommer till punkt A med 75 km/h, 90 m hur många gånger större kraft än sin egen tyngd måste han bära upp i det läget? Hur stor är den största hastighet åkaren kan ha när han passerar B utan att hoppa? Friktion mellan skidor och snö försummas. Åkarens tyngdpunkt befinner sig 1 m ovanför snön. 135 m (Svacka; 1,5 ggr sin egen tyngd, backkrön; v max = 36,1 m/s eller 13 km/h) Under en cykeltävling kommer åkarna in i en kurva med krökningsradien r = 30 m. Beräkna hur stor hastighet åkarna maximalt kan ha om friktionen mot vägbanan är nedsatt efter en regnskur och μ s = 0,4. Hur stor vinkel Θ får cyklisterna luta sig inåt under kurvan för att hålla balansen? (v max = 18,85 m/s eller 39 km/h, lutning Θ = arctan(μ s ) = 1,8 o ) 9
10 Diskussionsexempel Vad händer när en skidåkare pendlar med sin arm som visas i figuren när han för fram staven för ett nytt tag under ett lopp? Har det någon betydelse om armen hålls rak eller om man för fram stav och arm i böjt läge? Övningstal i kompendiet (sid ) Observera att lösningar till talen finns på sid. 11 och framåt i kompendiet. Formelsamlingen i appendix, sid. A9 kan också vara användbar. Kommentarer till några av talen: Tal 30; A och B hör ihop, dvs. gemensamma data för massor etc. Tal 31c; konst. acceleration förutsätts. Rekommenderade uppgifter: Tal 9, 30, 31, 33 (ganska svårt). 10
Introduktion till Biomekanik, Dynamik - kinematik VT 2006
Dynamik Handlar om kroppar med föränderlig rörelse. Dynamiken indelas traditionellt i kinematik och kinetik. Kinematik: Enbart rörelsebeskrivning, centrala begrepp är sträcka (vinkel) hastighet och acceleration.
Biomekanik, 5 poäng Kinetik
Teori: F = ma Dessutom gäller, som i statien, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En ropp utan yttre raftpåveran förblir i sitt tillstånd av vila eller liformig, rätlinjig rörelse.. Accelerationslagen:
Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen
Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande
Introduktion till Biomekanik - Statik VT 2006
Pass 2 Aktions- reaktionskraft Nu är det dags att presentera grundstenarna inom Mekanik Newtons lagar: 1. Tröghetslagen: En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av
Biomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Introduktion till Biomekanik - Statik VT 2006
Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Övningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan
Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,
Biomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016
Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, 4.1-3 version 2016 Kraftmoment (vridmoment) En krafts förmåga att vrida ett föremål runt en vridningsaxel kallas för kraftmoment (vridmoment). Moment betecknas
Definitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
Introduktion till Biomekanik - Statik VT 2006
http://apachepersonal.miun.se/~petcar/biomekanikintro.htm Innehåll Terminologi inom biomekanik. Skelettets, musklernas, senors och ligamentens funktion och uppbyggnad. Statik, kinematik och kinetik. Idrotts-
Introduktion till Biomekanik - Statik VT 2006
1 Jämviktsberäkning metodik (repetition) Ex. 1. Frilägg den del du vill beräkna krafterna på. 2. Rita ut alla krafter (med lämpliga benämningar) 3. Rita ut alla avstånd du vet, gör gärna om till meter.
ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Lösningar Kap 11 Kraft och rörelse
Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella
Kapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
Kapitel 4 Arbete, energi och effekt
Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten
7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
Upp gifter. 1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa.
1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa. 2. En såpbubbla dalar genom luften med den konstanta hastigheten 1,1 cm/s. Vilken kraft känner den av från luften
Repetitionsuppgifter i Fysik 1
Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
Tillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Introhäfte Fysik II. för. Teknisk bastermin ht 2018
Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del 1 Statik och partikeldynamik TMME27 2016-10-24, kl 14.00-19.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE, TERF Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27
Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00
Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta
Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något.
Björne Torstenson KRAFTER sid 1 Centralt innehåll: Hävarmar och utväxling i verktyg och redskap, till exempel i saxar, spett, block och taljor. (9FVL2) Krafter, rörelser och rörelseförändringar i vardagliga
Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14
Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter
6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter
27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2
Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen
Working with parents. Models for activities in science centres and museums
Working with parents. Models for activities in science centres and museums FEAST Working with parents. Models for activities in science centres and museums 1 Index Farkoster som rullar, svävar och drar...
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
NEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Introduktion till Biomekanik - Statik VT 2006
Kurskompendie, 150kr Kurshemsida (internt på miun) http://apachepersonal.miun.se/~petcar/biomekanikintro.htm (externt) www.miun.se/personal/peter.carlsson/biomekanikintro.htm Föreläsare Marie Lund, marie.lund@miun.se
Grundläggande om krafter och kraftmoment
Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan
=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs
1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis
Mekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Inre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
Tentamen i Mekanik för D, TFYA93/TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Magnus Johansson Tentamen i Mekanik för D, TFYA93/TFYY68 Måndag 019-01-14 kl. 14.00-19.00 Tillåtna Hjälpmedel: Physics Handbook
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
Kollisioner, impuls, rörelsemängd kapitel 8
Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Tentamen i Mekanik Statik
Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:
" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Instuderingsfrågor Krafter och Rörelser
1. Hur stor tyngd har ett föremål med massan: a) 4 kg b) 200 g Instuderingsfrågor Krafter och Rörelser 2. Hur stor massa har ett föremål om tyngden är: a) 8 N b) 450 N 3. Hur stor är jorden dragningskraft
I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.
I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet
= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Mekanik FK2002m. Kraft och rörelse I
Mekanik FK2002m Föreläsning 4 Kraft och rörelse I 2013-09-05 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 4 Introduktion Hastighet Langt under 3x10 8 Nara : 3x10 8 Storlek 10 9 Langt over : 10 9 Klassisk
Ord att kunna förklara
Rörelse och kraft Ord att kunna förklara Rörelse Hastighet Acceleration Retardation Fritt fall Kraft Gravitationskraft (=tyngdkraft) Friktionskraft Centripetalkraft Tyngdpunkt Stödyta Motkraft Rörelse
Skidans form- konsten att carva
Skidans form- konsten att carva Skidåkarens uppgift är enkelt uttryckt att balansera de krafter som han/hon utsätts för under ett åk. Åkaren försöker att på snabbaste sätt ta sig igenom och förbi en serie
Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.
Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina
6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Mekanik Laboration 3 (MB3)
Institutionen för fysik Ingvar Albinsson/Carlo Ruberto Naturvetenskapligt basår, NBAF00 Laborationen genomförs i grupper om två-tre personer och består av fem olika försök som genomförs i valfri ordning
" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.
Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan
1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.
Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..
Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
TFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Provmoment: Ladok-kod: A133TG Tentamen ges för: TGIEA16h, TGIEL16h, TGIEO16h. Tentamens Kod: Tentamensdatum: Tid: 14-18
Naturvetenskap Provmoment: Ladok-kod: A133TG Tentamen ges för: TGIEA16h, TGIEL16h, TGIEO16h 7,5 högskolepoäng Tentamens Kod: Tentamensdatum: 2017-01-12 Tid: 14-18 Hjälpmedel: Grafritande miniräknare (ej
Introduktion till Biomekanik, Dynamik härledda samband VT 2006
Härledda samband (alternativ till kraftlagen) II. Impuls rörelsemängd Användbart där kraftpåverkan sker över en viss tid. Impuls: Får en kraft verka en viss tid sägs den ge en viss impuls. Impuls definieras
= + = ,82 = 3,05 s
Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når
Tentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften
Karl Björk. Elementär. Mekanik. Tredje upplagan
Karl Björk Elementär Mekanik Tredje upplagan Förord till första upplagan Föreliggande bok i elementär mekanik är tänkt som stöd i undervisningen i huvudmomentet mekanik i blockämnet teknologi. Det förutsätts
a. b a. b. 7.
1. Mattias och hans vänner badar vid ett hopptorn som är 10,3 m högt. Hur lång tid tar det innan man slår i vattnet om man hoppar rakt ner från tornet? 2. En boll träffar ribban på ett handbollsmål och
Mekanik F, del 2 (FFM521)
Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella
Mer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Kursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:
KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(
När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall.
MÅL med arbetsområdet När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. ge exempel på krafter som påverkar
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
LEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten