Definitioner: hastighet : v = dr dt = r fart : v = v
|
|
- Astrid Ivarsson
- för 8 år sedan
- Visningar:
Transkript
1 KOMIHÅG 8: Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen Föreläsning 9: PARTIKELKINEMATIK (rörelse) Kinematiska storheter: läge-hastighet-acceleration y 1 r! r m a v x Definitioner: hastighet : v = dr dt = r fart : v = v acceleration: a = d2 r dt 2 = r = v Dessutom införs Rörelsemängd: p = mv, dp Newtons 2:a lag: dt = F
2 Kinematik med vanliga (kartesiska) x, y, z-koordinater: Problem: Rörelsen i planet beskrivs av tidsfunktionerna x(t)= bt, y( t) = c " gt 2 / 2, där b, c och g är konstanter Bestäm hastigheten och accelerationen, samt vinkeln mellan dem Lösning: Först använder vi definitioner med hjälp av de kartesiska koordinaterna x och y ( ) = bt,c " gt 2 / 2 ( x ( t), y ( t) ) = ( b,"gt) v = ( 0,"g) r = x( t),y( t) v = ( ) a = Det är här fråga om en kaströrelse, ty accelerationen är konstant riktad neråt i (vertikal-) planet Vinkeln mellan acceleration och hastighet får man sedan ur skalärprodukten: v a = vacos" b 2 + ( gt) 2 # g#cos" g 2 t = dvs # & gt " = arccos% ( % $ b 2 + ( gt) 2 ( ' När är mellanliggande vinkel 90 grader? 2
3 Kinematiska samband: 3 Om bara accelerationen är känd, behöver man integrera för att få hela kinematiken, dvs även läge och hastighet Vi tittar på några olika fall: Konstant acceleration a Problem: Hur rör sig en partikel som har accelerationen a? Lösning: Vi väljer lämpliga x, y, z axlar så att a = ( 0,"g,0) Definitionen av accelerationen a : a = dv dt säger att hastigheten v är primitiv funktion till a Dvs v = a t + konst Konstantens värde måste vara hastighetens värde då t = 0 Vi skriver v = a t + v 0 Detta är en vektorekvation Hur ser den ut i komponentform? Slutsats: Om vi vet a måste vi också veta v 0 för att fullständigt veta hastigheten vid en godtycklig tidpunkt!! Om v är känd kan vi använda definitionen v = dr dt för att bestämma läget r Hastigheten är en primitiv funktion av hastigheten: r = 1 2 a t 2 + v 0 t + konstant Konstantens värde är läget vid tidpunkten t = 0 Vi skriver: r = 1 2 a t 2 + v 0 t + r 0 Jämför kaströrelse med a = ( 0,"g,0)!
4 Exempel: Kaströrelse på lutande plan 4 Problem: En partikel på ett lutande plan rör sig med accelerationsvektorn a ( t) och man vet hastighet och läge vid tiden t=0, v 0 respektive r 0 Bestäm den tid det tar innan nedslaget sträckan L längre ned i backen För vilken fart v 0 är detta möjligt? Lösning: Välj lutande koordinatsystem a = ( g /2," 3g /2,0), v 0 = (v 0 /2, 3v 0 /2,0), och rörelsen börjar i origo, Den tid luftfärden tar beräknas ur x-riktning: L = 1 " g % $ ' t # 2 1 & 2 v 0t => t g v 0t " 4 g L = 0 => t = " v 0 g + v 0 2 g g måste vara lika, så inses att v 0 = L Om man jämför med y-rörelsens tid, som Lg 2 För en fullständigt känd rörelse behövs antingen: ( ) är känd, eller att r t att v ( t) och r 0 är kända, eller att a ( t), v 0 och r 0 är kända
5 KOMIHÅG 9: Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kaströrelse, rak rörelse Föreläsning 10: Viskös friktion uppstår på grund av rörelse i vätska eller gas En 'bromsande' viskös friktion som ökar med hastigheten ges av F c = "cv Konstanten c beror av kontaktytans form och typ av vätska (gas) bland annat Exempel: Vid 'fritt' fall uppnås en gränshastighet v gräns = mg c Luftmotståndet ökar tills en jämvikt inställer sig! Fallrörelse med viskös friktion: Exampel: En partikel med massa m släpps (v=0) i vätska Hur kommer farten att ändras med tiden? Välj koordinataxel nedåt Newtons 2:a lag säger: ma = mg " cv eller uttryckt med hastighetskomponenten v: v = g " m c v Lös v genom att multiplicera denna ekvation med e ct /m Detta ger först: v e ct /m + m c vect /m = ge ct /m Sedan d dt ct /m ( ve ) = dt d " $ # mg c ect /m Konstanten måste vara C = " mg c v blir noll då t=0 Slutligen v(t) = mg c % ', som ger ve ct /m = mg & c ect /m + C 5 så att hastighetskomponenten /m ( 1" e"ct )
6 6 Cirkelrörelser- liformig och allmän v r a, Exempel: Likformig cirkelrörelse Låt nu rörelsen i planet beskrivas av de polära koordinaterna r (konstant) och " För likformig cirkelrörelse är "( t) = #t, där " är konstant Bestäm för denna rörelse läge, hastighet och acceleration och vinklarna mellan dessa Lösning: Vi kan nu beskriva läge-hastighet-acceleration som vektorer r = rcos" ( t),rsin" ( t) ( ) ( ) = r cos#t,sin#t ( ) = #r( $sin#t,cos#t) v = $#rsin#t,#rcos#t a = $r# 2 ( cos#t,sin#t) = $# 2 r Läge och hastighet är vinkelräta, ty ( ) = 0 r v = "r 2 #cos"tsin"t + sin"tcos"t medan läge och acceleration tydligen är anti-parallella Denna rörelse kallas likformig cirkelrörelse
7 7 Exempel: Allmän cirkelrörelse I detta fall är inte farten längre konstant Uttrycket för hastighetsvektorn blir: v = r" e " eftersom r är noll All hastighet är transversell och i den riktningen är komponenten v = r" Accelerationen förenklas till: a = ("r# 2 )e r + ( r # )e # I detta uttryck kan vi byta ut " mot v med hjälp av likheten v = r" # Då får vi a = " v 2 & % $ r ( e r + v e ) ' Naturliga riktningar: Tangentriktning och normalriktning Byter vi sedan ut riktningarna (radiell, transversell) till de naturliga (tangentiell, normal) riktningarna med e r "#e n och e " #e t, så får vi: a = v 2 r e n + v e t Detta uttryck för accelerationen är mycket användbart
8 8
9 KOMIHÅG 10: Fallrörelse med friktion Likformig och allmän cirkelrörelse Radiell och transversell riktning 9 Föreläsning 11: ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan, och z beskriver rörelsen i normalriktningen till planet radiell riktning ut från en z-axel till planet representeras av enhetsvektorn e r : e r = ( cos",sin",0) transversell riktning är den riktning partikeln rör sig om bara dess vinkelkoordinat " i planet ändras Lämplig enhetsvektor fås genom att studera förändringsvektorn de r / d" ( ) e " = de r d" = #sin",cos",0 som är en enhetsvektor Kinematiken i ett fullständigt cylindriskt system: -Läget: r = re r + ze z -Hastighet: v = r = r e r + re r + z e z = r e r + r" de r d" + z e z v = r e r + r" e " + z e z -Acceleration: a = v = r e r + r " e " + r " e " + r " e " + r" e " + z e z Men den näst sista termen kan inte stå som den är Varför? En extra räkning ger: e " = " de " d" = # " e r, så att slutligen: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z
10 10 Problem: Beskriv hastighet, fart och acceleration i en likformig cirkelrörelse med radie R Lösning: Cirkelbanan ligger i ett plan z = 0 Avståndet till centrum och farten är konstanta, dvs v = r e r + r" e " = R" e " Farten kan beskrivas med v = R" Enhetsvektorn e " pekar i tangentens riktning Accelerationen för all plan rörelse kan också skrivas med z = 0: a = ( r " r# 2 )e r + ( r # + 2 r # )e # Eftersom banan är cirkulär med en konstant fart försvinner en del termer Alltså a = " v 2 R e, där v = R" r Accelerationen är riktad in mot banans centrum Vi beräknar storleken av accelerationen: a = v 2 R
11 11
12 -Naturligt koordinatsystem tangent- och normalriktning Betrakta rörelse längs ett givet spår, typ järnväg En koordinat (sträckan s) 12 Två naturliga riktningar i planet: tangentriktning och normalriktning - Hastigheten v är intimt förknippad med den momentana tangentriktningen och sträckan längs spåret Hastighetens riktningsvektor: e t = v v, där v = v = s Streckan längs spåret kan definieras ur fartens tidsberoende: Som en följd av dessa två saker kan hastigheten beskrivas fullständigt i det naturliga systemet: v = s e t = ve t Under ett kort tidsintervall kan vi betrakta rörelsen från centrum av en tangerande cirkel till banan Inför en tangerande cirkel
13 13 med radie ", så att z = 0 definierar cirkelns plan Hastigheten är då tangent till cirkelbågen Vi har i detta system v = " # e #, så att v = " # I samma system beskrivs accelerationen som a = ( " # " $ 2 )e r + (" $ + 2 " $ )e $, med " = " = 0, dvs a = "# $ 2 e r + # $ e $ Byter vi ut cylinderriktningarna med de naturliga riktningarna dvs e " = e t och e r = "e n, samt använder v = "#, och v = " #, får vi Accelerationen i det naturliga systemet: a = v e t + v 2 " e n
Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Inre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Mer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Komihåg 5: ( ) + " # " # r BA Accelerationsanalys i planet: a A. = a B. + " # r BA
1 Föreläsning 6: Relativ rörelse (kap 215 216) Komihåg 5: ( ) Accelerationssamb: a A = a B + " # r BA + " # " # r BA Accelerationsanalys i planet: a A = a B " d BA # 2 e r + d BA # e # Rullning på plan
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
NEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Tid läge och accelera.on
Tid läge och accelera.on Tid t Läge x = x(t) Hastighet v(t) = dx dt x(t) = Acceleration a(t) = dv dt v(t) = t t0 v(t)dt t t 0 a(t)dt Eq 1 Eq 2 Eq 3 MEN KOM IHÅG: 1. För a> de>a skall vara användbart måste.dsberoendet
.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs
1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis
" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Obs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer!
1) m M Problemlösningar µ α α Lösning: Frilägg massorna: T N N F µ T Mg mg Jämvikt för M kräver T Mgsin α = 0 (1) a) Gränsfall F µ = µ N men jämvikt för m kräver: N mg cosα = 0 (2) T µ N mgsinα = 0 (3)
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v
Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Introduktion till Biomekanik, Dynamik - kinetik VT 2006
Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A
1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet
Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:
KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(
Tentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Stelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
TFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter
Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av
Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk
Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi
Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten
university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Mekanik FK2002m. Kinematik i flera dimensioner
Mekanik FK2002m Föreläsning 3 Kinematik i flera dimensioner 2013-09-04 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 2 Introduktion Nu har vi gått igenom: - Kinematik i en dimension - Vektorer i två
SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block
KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Repetition Mekanik, grundkurs
Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet
Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen
010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt
Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen
007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.
Hanno Essén Lagranges metod för en partikel
Hanno Essén Lagranges metod för en partikel KTH MEKANIK STOCKHOLM 2004 1 Inledning Joseph Louis Lagrange (1763-1813) fann en metod som gör det möjligt att enkelt ta fram rörelseekvationerna för system
KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Tentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!
2015-06-08 Tentamen i Mekanik I SG1130, baskurs P1 och M1. KTH Mekanik OBS: Inga hjälpmede förutom rit- och skrivdon får användas! Problemtentamen 1. Ett homogent halvcylinderskal hålls i jämvikt på ett
SF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
Föreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,
Tillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
October 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Vektorgeometri och funktionslära
Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),
AB2.1: Grundläggande begrepp av vektoranalys
AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta
Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan
KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
II. Partikelkinetik {RK 5,6,7}
II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar
Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Arbete och effekt vid rotation
ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds
Integraler av vektorfält Mats Persson
Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på
u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)
ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen
010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner
Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:
Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten
MATEMATIK 5 veckotimmar
EUROPEISK STUDENTEXAMEN 007 MATEMATIK 5 veckotimmar DATUM : 11 Juni 007 (förmiddag) SKRIVNINGSTID : 4 timmar (40 minuter) TILLÅTNA HJÄLPMEDEL : Europaskolornas formelsamling En icke-programmerbar, icke-grafritande
Uppsala Universitet Matematiska Institutionen Bo Styf
Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys 5 hp, för STS 2010-03-19 Genomgånget på föreläsningarna 1-5. Här sammanfattar vi det som genomgåtts på de olika föreläsningarna.
Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.
KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer
Om ellipsen och hyperbelns optiska egenskaper
Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer
z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)
Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z
LEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Fuglesangs skiftnyckel och Möten i rymden. Jan-Erik Björk och Jan Boman
Fuglesangs skiftnyckel och Möten i rymden Jan-Erik Björk och Jan Boman Det sägs att Christer Fuglesang tappade en skiftnyckel under sin rymdpromenad nyligen. Enligt Keplers första lag kom skiftnyckeln
9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.
Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna
SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013
SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre
SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
9, 10. TFYA15 Fysikaliska modeller VT2019 Partikelkinetik-energi Magnus Johansson,IFM, LiU
9, 10 Kulkanor Två kulor åker friktionsfritt nedför olika kanor. Vilken kula kommer ner till kanans slut först? Vilken kula har högst fart vid kanans slut? h A B Fredrik Karlsson, 9 W = F r Exempel: Partikel
Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik
Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt
1 Vektorer i koordinatsystem
1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5