KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
|
|
- Ann Lundberg
- för 6 år sedan
- Visningar:
Transkript
1 1 KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av om angreppspunkten flyttas längs verkningslinjen. Föreläsning 4: ANALYS och FÖRENKLING av KRAFTSYSTEM Två elementära (grundläggande) kraftsystem: Ensam kraft: Ensam kraft kan inte förenklas, bara flyttas längs sin verkningslinje. Ensamt KRAFTPAR: Ensamt kraftpar kan inte ersättas med ensam kraft. Exempel: Betrakta två lika, men motriktade, krafter som angriper ett föremål med xy-axlar på följande fyra sätt: y O x Kraftparens egenskaper? Vilka par kan vrida? Åt vilket håll?
2 2 Ett kraftpars totala kraftsumma = 0, men det totala kraftmomentet är i allmänhet inte noll. Med angrepp i r 1 och r 2 ger kraftparet ett moment: M O = r 1 " F + r 2 " #F ( ) ( ) " F = r 1 # r 2 Byte av momentpunkt från O till P? M P = ( r 1 " r P ) # F + r 2 " r P ( ) # F = M O ( ) #("F) = r 1 " r 2 Oändligt många olika par av krafter kan skapa samma moment=kraftpar (par). Storleken (abslutbeloppet) av momentet beräknas enklast med formeln: M = df F=kraftens belopp, d=avstånd mellan kraftparets verkningslinjer. Vridningsriktningen kan förtydligas med en bågformad pil för vridningar (moturs/medurs) i ett plan. Ett kraftpar ligger alltid i ett plan och vridningsriktningen i det planet kan beskrivas med en bågformad pil! Förenkling av komplicerade system av krafter: Hur än ett system av många krafter ser ut så är det viktiga för dess verkan på stela kroppar hur totalkraften F ser ut och hur den totala vridande förmågan M P ser ut, för någon lämplig momentpunkt P. Därför kan alla kraftsystem ersättas med en ensam kraft F och ett ensamt (kraftlöst) kraftpar med moment M P i den valda punkten P.
3 Speciellt vid JÄMVIKT. Jämviktslag (Eulers lagar): för alla val av P : 1) F = 0, 2) M P = 0. I praktiken räcker det att välja en lämplig momentpunkt P för beräkning av kraftmomentet. Se slutet av denna föreläsning. EKVIMOMENTA kraftsystem Definition: Ekvimomenta kraftsystem är sådana att deras totala kraftmoment är lika för godtyckligt val av momentpunkt. Systemen har samma kraftsumma (totalkraft). 3 M=Fd F d F De båda kraftsystemen i figuren är ekvimomenta. Det vänstra kraftsystemet har bara en kraft, det högra kraftsystemet har en lika stor kraft angripande i en annan punkt med ett kompenserande kraftparsmoment. Reduktionspunkt: angreppspunkt för det förenklade kraftsystemet, dvs RESULTANTEN Flera val av reduktionspunkt kan förekomma. Ett förenklat, men ekvimoment system av en ensam kraft + ett ensamt kraftpar i en vald reduktionspunkt kallas resultant(-systemet) för denna reduktionspunkt.
4 Problem: Förenkla följande plana kraftsystem till ett ekvimoment kraft+kraftpar system i origo. Om möjligt hitta även en speciell reduktionspunkt så att inget kraftpar behövs. 4 F F d d F d d F Lösning: först sedan 2F 2F M=-2Fd d ENKRAFTS-RESULTANT Ett kraftsystem som kan reduceras till endast en ekvivalent kraft F sägs ha en enkraftsresultant (kraftresultant) F.
5 5 Problem: Finns det fler enkraftsresultanter som är ekvivalenta med ett givet kraftsystem.??? Svar: Ja!! Längs en linje av reduktionspunkter, som ligger på kraftsummans verkningslinje. Hur bevisas detta? Problem: Har det plana kraftsystemet i figuren en enkraftsresultant? Rita ut den i så fall. Lösning: Ja! Se figuren:
6 6 Krafternas vridande förmåga beror av momentpunkten. Hur ska man välja momentpunkt? Finns det enkla val? Till exempel: Om man letar efter en enkraftresultant för ett kraftsystem måste man hitta en (moment-)punkt som kraftsystemet inte kan vrida kring! Sambandsformeln for kraftmoment. Byte av momentpunkt: Antag att vi har ett system av krafter och kraftpar. Detta kan beskrivas av ett antal krafter med respektive angreppspunkter: r j,f j { }, där j =1, 2,..., N. I momentpunkten O mäter vi det totala momentet N M O = # r j " F j, j=1 för N krafter utplacerade med angreppspunkter r j. I momentpunkten P mäter vi det totala momentet N M P = $ r j " r P, för samma krafter. j=1 ( ) # F j Skillnaden blir i detta fall: N N M O " M P = $ r j " r j + r P = # r P " F j. j=1 ( ) # F j j=1 ( ) Detta uttryck kan lätt förenklas om vi inför totala kraften N F = " F j. j=1 Ty nu ser vi sambandet: M O = M P + r P " F. (Sambandsformeln för M) Kom ihåg att r P = r OP! Ifall man vill jämföra andra val av momentpunkter.
7 7 Problem: Bestäm enkraftsresultanten för de två verkande krafterna på balken. 8 kn 2 m 4 m 5 kn Lösning: Den ekvimomenta enkraftsresultanten måste vara lika stor som kraftsumman av de ursprungliga krafterna, dvs F y =-3 kn. Antag att den angriper på avståndet x från väggen. Då måste gälla att totala momenten m a p väggfästet är lika: F y x = 5" 2 knm# 8 " 6 knm = #38 knm x =12.67 m HOPPSAN! Enkraftsresultanten kanske inte alltid är förknippad med en fysikalisk punkt! Anmärkning: Enkraftsresultanten kan ju inte vrida map sin egen angreppspunkt. Det måste då även gälla det ursprungliga kraftsystemets totala moment i den angreppspunkten.
8 8 KOMIHÅG 4: Ekvimomenta kraftsystem: Lika kraftsumma och momentsumma. Sambandsformeln: M O = M P + r P " F. eller M Q = M P + r QP " F, för momentpunkter Q, P. Enkraftsresultant. Föreläsning 5: Enkraftsresultant finns inte alltid! Antag att det finns en enkraftsresultant F som angriper i r A. Då kan denna ensamma kraft inte ge något moment med avseende på den punkten, men måste kunna återskapa momentet M O för det ursprungliga kraftsystemet. Dvs: M O = r A " F. För kraftsystem med enkraftsresultant gäller således: M O "F (kryssproduktens egenskap). Egenskapen är ett användbart villkor för att testa om ett kraftsystem har en enkraftsresultant eller inte. Hur hittar man placeringen r A av en kraftresultant? För att bestämma denna behöver man räkna ut kraftsumman och momentsumman av det ursprungliga
9 9 kraftsystemet. Vi kan alltid använda origo som momenpunkt. Sedan ställer vi upp ekvationen: M O = r A " F Använd komponenter i ekvationen. För ett plant kraftsystem förenklas vektorekvationen till den 'skalära' ekvationen för z-riktingens komponent (upp ur xy-planet): x A F y " y A F x = M O Detta är ett samband för en linje i ( x, y )-planet, men det räcker att hitta en punkt på linjen, t.ex där y = y A = 0. Alltså har vi resultantens läge i planet givet av " r A = M % O $,0 # F ', samt längs verkningslinjen. y & Komihåg: En krafts angreppspunkt kan fritt väljas längs kraftens verkningslinje!! JÄMVIKTER Definition: Föremål i jämvikt: Det finns en icke-roterande och icke-accelererande referensram (dvs inertialsystem) där föremålet befinner sig i vila. Jämviktslag: Jämvikt kräver (nödvändigt) för godtycklig resultant 1) F = 0 2) M P = 0 (alla momentpunkter P)
10 10 Detta är förutsättningen för att ett föremål ej börjar röra sig = börjar translation+rotation.
11 11 Jämviktsproblem 3 kn A 1.2 m 2.4 m B Problem: En homogen och likformig balk har en massa /längd given av 60 kg/m. Bestäm reaktionskrafterna i stödpunkterna A och B. Lösning: Fritt vridbar led i A representeras av en s.k. enkraftsresultant i planet. Fri rullkontakt i B representeras av en vertikal normalkraft. Totala tyngdkraften kan skrivas som en enkraftsresultant W som angriper i mitten på balken. 3 obekanta! 3 ekvationer krävs! Frilägg balk! A y A x F 2d B d W 3d/2 Jämvikt kräver: " A x = 0, " A y + B # F #W = 0, A!Fd! W( 3d / 2) + B( 3d) = 0 och där vi infört: d =1.2 m, W = 60 " 9.81" 3.6 N = 2120 N Vi löser ut obekanta ur de två sista ekvationerna: A y = 2 3 F W, B = 1 3 F W
12 12 A α N A N B mg B Problem: Ett glatt homogent klot med massan m vilar mot två plana hårda ytor enligt figuren. Bestäm kontaktkrafternas storlek. Lösning: Kraftanalys: Det finns ingen friktion vid kontaktytorna enligt uppgift, endast tyngdkraften och normalkrafterna beaktas. Vi bestämmer N A > 0 och N B > 0 på följande sätt. Den plana jämvikten kräver: N A cos" # mg = 0, N A sin" # N B = 0, dvs N A = mg cos", N B = mg tan".
13 13 Typiska resultanter Leder - Glatt led: - Ej glatt led: Inre spänningskrafter De krafter som uppkommer i och verkar på en snittyta mellan två delsystem i samma kropp representeras av två motriktade resultanter, som verkar på vardera delsystem. F j M M R R
14 14 Problem: Betrakta en smal, homogen balk i jämvikt som är infäst i en betongvägg. Den synliga delen av balken har längd L och massa m. Rita krafter på den delen av balken som ligger bortom snittet sett från väggen! Lösning: Vi frilägger (ritar krafter, kraftmoment och identifierar dessa) den högra (fria) delen av balken. M R L-x W W betecknar tyngdkraft. R och M utgör resultant från den andra delen av balken som angriper i snittet.
15 KOMIHÅG 5: Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c) Beräkningar Föreläsning 6: MASSCENTRUM Diskret eller kontinuerlig fördelning av tyngdkrafter: Masscentrum en balanspunkt för vridningar: Kroppen kan ha olika orienteringar, men en axel genom en viss punkt (masscentrum) lämnar kroppen i vila. b) 15 a) a) mg mg Streckade linjer är enkraftsresultantens verkningslinjer för två olika kroppsorienteringar a) och b).
16 Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O = " r j # m j g = " m j r j ( ) # g. Det finns enkraftsresultant eftersom alla enskilda kryssprodukter och det totala momentet M O "g. Dvs, alla krafter och även kraftsumman är ortogonala mot M O. Ersätt alla tyngkrafter med en total tyngdkraft mg i någon punkt r G så att M O = r G " mg, eller om vi flyttar massan i formeln: M O = mr G " g. Vi ser att överensstämmelse med 16 sidans första formel kräver r G = -- Punktpartiklar "m j r j m. "m j r j r G = ( x G,y G,z G ) = m. -- Kontinuerlig massfördelning: Massan M är fördelad inom volymen V. ( ) = 1 M dmr r G = x G,y G,z G " = 1 M M " dm dv r dv V För homogena föremål är densiteten konstant (lika med M/V) och kan flyttas utanför integralen, dvs r G = ( x G,y G,z G ) = 1 " dm M dv r dv = 1 " V r dv (homogent) V V
17 Masscentrum för sammansatta kroppar: Ibland sätts enkla kroppar ihop till något mer komplicerat. För sammansatta kroppar: "( m) j r gj j r G =, ( m) j " j där de enkla delkropparnas masscentra (numrerade med index j) antas ha kända lägen r gj, eller för kontinuerlig massfördelning av kända masselement: r G = 1 M " dmr. g M 17 Exempel: Kontinuerliga massfördelningar kan ibland ses som en mängd ihopklistrade strimlor av samma form. a) En rektangel kan ses som en packe av tunna raka remsor. b) En cirkulär skiva kan ses som en packe av tunna cirkulära remsor.
18 Jämviktsproblem Problem: Betrakta en smal, homogen balk i jämvikt som är infäst i en betongvägg. Den synliga delen av balken har längd L och massa m. Studera det inre momentet i ett snitt på avståndet x från väggen. Lösning: Vi frilägger den högra (fria) delen av balken. M R L-x 18 W Eftersom de enda yttre krafterna på yttre delen av balken, representerade av tyngdkraftens resultant # W = m $ % L ( L " x) & '( g, är vertikala kan vi från början ansätta en inre vertikal tvärkraftsresultant R, samt ett inre moment M. För momentjämvikt av yttre delen av balken med avseende på snittpunkten fås M + 1 ( 2 L " x $ ) mg L # ( L " x ' & )) = 0, dvs % ( M = " 1 mg ( 2 L L " x ) 2, (dvs moturs) Det inre momentet ökar kvadratiskt in mot infästningen!!
19 19 P r Problem Ett homogent halvcylinderskal hålls i jämvikt på ett horisontellt underlag med ett horisontellt snöre. Bestäm den friktionskraft som behövs för en given lutningsvinkel ". Ledtråd: Masscentrums läge är beläget på avståndet 2r/ " från skalets centrum längs tvärsnittets symmetrilinje. Redovisa införda beteckningar.
20 20 Lösning Vi inför beteckningar enligt figuren. Jämvikt kräver: N = mg och P = F µ. Momentjämvikt med avseende på cirkelcentrum ger dessutom: $ 2 ' & rmg # rp) sin* # rf %" ( µ = 0 dvs F µ = 2mgsin" #(1+ sin").,
KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
1 KOMIHÅG 2: --------------------------------- Kraft är en vektor me angreppspunkt och verkningslinje. Kraftmoment: M P = r PA ", r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoene av om
Läs merVar ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
Läs mer" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.
1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------
Läs merMålsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Läs merTentamen i Mekanik SG1107, baskurs S2. Problemtentamen
010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
Läs merBiomekanik, 5 poäng Moment
(kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en
Läs merFÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN
FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.
Läs merTentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten
Läs merSG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
Läs merMer Friktion jämviktsvillkor
KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning
Läs merTentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merMålsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter
Läs merTentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!
2015-06-08 Tentamen i Mekanik I SG1130, baskurs P1 och M1. KTH Mekanik OBS: Inga hjälpmede förutom rit- och skrivdon får användas! Problemtentamen 1. Ett homogent halvcylinderskal hålls i jämvikt på ett
Läs merKOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Läs merOmtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block
Läs merHärled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Läs merUppgifter till KRAFTER. Peter Gustavsson Per-Erik Austrell
Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter... 3 2 Krafter... 5 A-uppgifter... 5 B-uppgifter... 5 3 Moment... 7 A-uppgifter... 7 B-uppgifter...
Läs merInre krafters resultanter
KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter
Läs merProblemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
Läs merKrafter och moment. mm F G (1.1)
1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en
Läs mer= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Läs merUppgifter till KRAFTER
Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9
Läs merStelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 4
LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merFöreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )
1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix
Läs merTentamen i Mekanik SG1130, baskurs P1. Problemtentamen
010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt
Läs merIntroduktion till Biomekanik - Statik VT 2006
Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)
Läs mermm F G (1.1) F mg (1.2) P (1.3)
Sid 1-1 1 1.1 Krafter och moment Inledning örståelsen för hur olika tper av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom bggnadskonsten. Gravitationskraften
Läs merOm den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Läs merAndra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Läs merTentamen i SG1140 Mekanik II för M, I. Problemtentamen
2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har
Läs merNewtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Läs mer" e n och Newtons 2:a lag
KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar
Läs mer. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:
KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(
Läs merVSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter
Läs merBiomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
Läs merTentamen i Mekanik Statik
Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:
Läs mer" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar
KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------
Läs merVälkommen! Till Kursen MEKANIK MSGB21. Föreläsningar & kursansvar:
Välkommen! Till Kursen MEKANIK MSGB21 Föreläsningar & kursansvar: Hans Johansson 21F226 Övningar: Lennart Berglund 21F227 Jens Ekengren 21D215 Anders Gåård 21F229 Sekreterare: Marika Johansson 21F218 Ur
Läs merTill Kursen MEKANIK MSGB21
Välkommen! Till Kursen MEKANIK MSGB21 Kursansvar: Hans Johansson 21F226 Föreläsningar: Hans Johansson & Anders Gåård Övningar: Anders Gåård 21F229 Mikael Åsberg 21D209 Hans Johansson 21F226 Sekreterare:
Läs mer2.2 Tvådimensionella jämviktsproblem Ledningar
2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Sfären påverkas av tre krafter. Enligt resonemanget om trekraftsystem i kapitel 2.2(a) måste krafternas verkningslinjer då skära varandra i en punkt,
Läs merKursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Läs merMekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Läs merNEWTONS 3 LAGAR för partiklar
wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir
Läs merBiomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Läs merLÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Läs merGrundläggande om krafter och kraftmoment
Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan
Läs merObs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer!
1) m M Problemlösningar µ α α Lösning: Frilägg massorna: T N N F µ T Mg mg Jämvikt för M kräver T Mgsin α = 0 (1) a) Gränsfall F µ = µ N men jämvikt för m kräver: N mg cosα = 0 (2) T µ N mgsinα = 0 (3)
Läs meruniversity-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Läs merKRAFTER. Peter Gustavsson Per-Erik Austrell
KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion
Läs merTentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling
Läs merKursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
Läs merVSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
Läs merM12 Mekanikens grunder Steg 2 Krafter och moment
M12 Mekanikens grunder Steg 2 Krafter och moment Namn: Kurs: Datum: Lektion 1: 2 Mekanikens grunder Kraft Exempel 1 Ex. 1 Rymdfärjan Columbus har just placerat ut den sista satelliten för denna gång och
Läs merKRAFTER. Peter Gustavsson Per-Erik Austrell
KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion
Läs merIntrohäfte Fysik II. för. Teknisk bastermin ht 2018
Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål
Läs merInlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
Läs merKOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Läs merRepetition Mekanik, grundkurs
Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet
Läs mer9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
Läs merS T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K
S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K Föreläsningar i statik Lindström, Stefan B. Copyright c 2013 Stefan B. Lindström Publicerad av Stefan Lindström, Linköping. https://sites.google.com/site/lindstroemepublicering
Läs mer6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Läs merLösningar Heureka 2 Kapitel 2 Kraftmoment och jämvikt
Lösningar Heureka Kapitel Kraftmoment och jämvikt Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel.1) Vi väljer en vridningsaxel vid brädans kontaktpunkt med ställningen till vänster,
Läs merTentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Läs merDefinitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
Läs merTentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta
Läs merIntroduktion till Biomekanik - Statik VT 2006
http://apachepersonal.miun.se/~petcar/biomekanikintro.htm Innehåll Terminologi inom biomekanik. Skelettets, musklernas, senors och ligamentens funktion och uppbyggnad. Statik, kinematik och kinetik. Idrotts-
Läs merFöreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 2
Mekanik Del tatik- och artikeldynamik 05 Utgåva öreläsningar i Mekanik (M0) Del: tatik och partikeldynamik Läsvecka öreläsning : Jämvikt jämviktsvillkor statiskt obestämda kraftsystem (/-/). Jämvikt: Rörelse
Läs merTentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14
Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter
Läs merArbete och effekt vid rotation
ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds
Läs mer9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Läs merLösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,
Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Läs merTillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Läs merS TAT I K O C H D Y N A M I K
S T E FA N B. L I N D S T R Ö M U P P L A G A 1 F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H D Y N A M I K Statik och dynamik Stefan B. Lindström upplaga 1 ISBN 978-91-981287-2-7 Copyright
Läs merTentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Läs merS T E FA N B. L I N D S T R Ö M U P P L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K
S T E FA N B. L I N D S T R Ö M U L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K Föreläsningar i statik Stefan B. Lindström upplaga 2 β Copyright c 2016 Stefan B. Lindström ublicerad av Stefan Lindström,
Läs merBiomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen
Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande
Läs merS TAT I K O C H PA R T I K E L D Y N A M I K
S T E FA N B. L I N D S T R Ö M U P P L A G A 2 - β F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H PA R T I K E L D Y N A M I K Föreläsningar i mekanik: Statik och partikeldynamik Lindström,
Läs merTentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet
Läs merFöreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A
1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet
Läs merVectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Läs merTentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng
Läs mer/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110]
Extrauppgifter Vridmoment version 0.11 [131110] Christian Karlsson Uppgiterna 4.29 4.32 tar upp några saker som boken inte tar upp och bör göras med extra mycket eftertanke. Uppgifterna 4.33 4.40 är blandade
Läs merFöreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot
1 Föreäsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap 3113 Komihåg 8: Tröghetsmoment = r dm = x + y dm m m Kinetisk energi för roterande stet system: T rot = 1 Röresemängdsmomentets zkomponent:
Läs merK-uppgifter Strukturmekanik/Materialmekanik
K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.
Läs mer3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk
3 Fackverk 3.1 Inledning En struktur som består av ett antal stänger eller balkar och som kopplats ihop med mer eller mindre ledade knutpunkter kallas för fackverk. Exempel på fackverkskonstruktioner är
Läs merLösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Läs merKOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Läs merS TAT I K O C H PA R T I K E L D Y N A M I K
S T E FA N B. L I N D S T R Ö M U P P L A G A 2 - β F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H PA R T I K E L D Y N A M I K Föreläsningar i mekanik: Statik och partikeldynamik Lindström,
Läs merKOMPLETTERINGAR TILL FYSIK A FÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET N 2. Juni 2006 NILS ALMQVIST
KOMPLETTERINGAR TILL YSIK A ÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET Mg N N Juni 006 NILS ALMQVIST INSTITUTIONEN ÖR TILLÄMPAD YSIK, MASKIN- OCH MATERIALTEKNIK örord Detta kompendium och bifogade laborationshandledningar
Läs merIntroduktion till Biomekanik - Statik VT 2006
Pass 2 Aktions- reaktionskraft Nu är det dags att presentera grundstenarna inom Mekanik Newtons lagar: 1. Tröghetslagen: En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av
Läs merTFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Läs mer