KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA

Storlek: px
Starta visningen från sidan:

Download "KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA"

Transkript

1 1 KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av om angreppspunkten flyttas längs verkningslinjen. Föreläsning 4: ANALYS och FÖRENKLING av KRAFTSYSTEM Två elementära (grundläggande) kraftsystem: Ensam kraft: Ensam kraft kan inte förenklas, bara flyttas längs sin verkningslinje. Ensamt KRAFTPAR: Ensamt kraftpar kan inte ersättas med ensam kraft. Exempel: Betrakta två lika, men motriktade, krafter som angriper ett föremål med xy-axlar på följande fyra sätt: y O x Kraftparens egenskaper? Vilka par kan vrida? Åt vilket håll?

2 2 Ett kraftpars totala kraftsumma = 0, men det totala kraftmomentet är i allmänhet inte noll. Med angrepp i r 1 och r 2 ger kraftparet ett moment: M O = r 1 " F + r 2 " #F ( ) ( ) " F = r 1 # r 2 Byte av momentpunkt från O till P? M P = ( r 1 " r P ) # F + r 2 " r P ( ) # F = M O ( ) #("F) = r 1 " r 2 Oändligt många olika par av krafter kan skapa samma moment=kraftpar (par). Storleken (abslutbeloppet) av momentet beräknas enklast med formeln: M = df F=kraftens belopp, d=avstånd mellan kraftparets verkningslinjer. Vridningsriktningen kan förtydligas med en bågformad pil för vridningar (moturs/medurs) i ett plan. Ett kraftpar ligger alltid i ett plan och vridningsriktningen i det planet kan beskrivas med en bågformad pil! Förenkling av komplicerade system av krafter: Hur än ett system av många krafter ser ut så är det viktiga för dess verkan på stela kroppar hur totalkraften F ser ut och hur den totala vridande förmågan M P ser ut, för någon lämplig momentpunkt P. Därför kan alla kraftsystem ersättas med en ensam kraft F och ett ensamt (kraftlöst) kraftpar med moment M P i den valda punkten P.

3 Speciellt vid JÄMVIKT. Jämviktslag (Eulers lagar): för alla val av P : 1) F = 0, 2) M P = 0. I praktiken räcker det att välja en lämplig momentpunkt P för beräkning av kraftmomentet. Se slutet av denna föreläsning. EKVIMOMENTA kraftsystem Definition: Ekvimomenta kraftsystem är sådana att deras totala kraftmoment är lika för godtyckligt val av momentpunkt. Systemen har samma kraftsumma (totalkraft). 3 M=Fd F d F De båda kraftsystemen i figuren är ekvimomenta. Det vänstra kraftsystemet har bara en kraft, det högra kraftsystemet har en lika stor kraft angripande i en annan punkt med ett kompenserande kraftparsmoment. Reduktionspunkt: angreppspunkt för det förenklade kraftsystemet, dvs RESULTANTEN Flera val av reduktionspunkt kan förekomma. Ett förenklat, men ekvimoment system av en ensam kraft + ett ensamt kraftpar i en vald reduktionspunkt kallas resultant(-systemet) för denna reduktionspunkt.

4 Problem: Förenkla följande plana kraftsystem till ett ekvimoment kraft+kraftpar system i origo. Om möjligt hitta även en speciell reduktionspunkt så att inget kraftpar behövs. 4 F F d d F d d F Lösning: först sedan 2F 2F M=-2Fd d ENKRAFTS-RESULTANT Ett kraftsystem som kan reduceras till endast en ekvivalent kraft F sägs ha en enkraftsresultant (kraftresultant) F.

5 5 Problem: Finns det fler enkraftsresultanter som är ekvivalenta med ett givet kraftsystem.??? Svar: Ja!! Längs en linje av reduktionspunkter, som ligger på kraftsummans verkningslinje. Hur bevisas detta? Problem: Har det plana kraftsystemet i figuren en enkraftsresultant? Rita ut den i så fall. Lösning: Ja! Se figuren:

6 6 Krafternas vridande förmåga beror av momentpunkten. Hur ska man välja momentpunkt? Finns det enkla val? Till exempel: Om man letar efter en enkraftresultant för ett kraftsystem måste man hitta en (moment-)punkt som kraftsystemet inte kan vrida kring! Sambandsformeln for kraftmoment. Byte av momentpunkt: Antag att vi har ett system av krafter och kraftpar. Detta kan beskrivas av ett antal krafter med respektive angreppspunkter: r j,f j { }, där j =1, 2,..., N. I momentpunkten O mäter vi det totala momentet N M O = # r j " F j, j=1 för N krafter utplacerade med angreppspunkter r j. I momentpunkten P mäter vi det totala momentet N M P = $ r j " r P, för samma krafter. j=1 ( ) # F j Skillnaden blir i detta fall: N N M O " M P = $ r j " r j + r P = # r P " F j. j=1 ( ) # F j j=1 ( ) Detta uttryck kan lätt förenklas om vi inför totala kraften N F = " F j. j=1 Ty nu ser vi sambandet: M O = M P + r P " F. (Sambandsformeln för M) Kom ihåg att r P = r OP! Ifall man vill jämföra andra val av momentpunkter.

7 7 Problem: Bestäm enkraftsresultanten för de två verkande krafterna på balken. 8 kn 2 m 4 m 5 kn Lösning: Den ekvimomenta enkraftsresultanten måste vara lika stor som kraftsumman av de ursprungliga krafterna, dvs F y =-3 kn. Antag att den angriper på avståndet x från väggen. Då måste gälla att totala momenten m a p väggfästet är lika: F y x = 5" 2 knm# 8 " 6 knm = #38 knm x =12.67 m HOPPSAN! Enkraftsresultanten kanske inte alltid är förknippad med en fysikalisk punkt! Anmärkning: Enkraftsresultanten kan ju inte vrida map sin egen angreppspunkt. Det måste då även gälla det ursprungliga kraftsystemets totala moment i den angreppspunkten.

8 8 KOMIHÅG 4: Ekvimomenta kraftsystem: Lika kraftsumma och momentsumma. Sambandsformeln: M O = M P + r P " F. eller M Q = M P + r QP " F, för momentpunkter Q, P. Enkraftsresultant. Föreläsning 5: Enkraftsresultant finns inte alltid! Antag att det finns en enkraftsresultant F som angriper i r A. Då kan denna ensamma kraft inte ge något moment med avseende på den punkten, men måste kunna återskapa momentet M O för det ursprungliga kraftsystemet. Dvs: M O = r A " F. För kraftsystem med enkraftsresultant gäller således: M O "F (kryssproduktens egenskap). Egenskapen är ett användbart villkor för att testa om ett kraftsystem har en enkraftsresultant eller inte. Hur hittar man placeringen r A av en kraftresultant? För att bestämma denna behöver man räkna ut kraftsumman och momentsumman av det ursprungliga

9 9 kraftsystemet. Vi kan alltid använda origo som momenpunkt. Sedan ställer vi upp ekvationen: M O = r A " F Använd komponenter i ekvationen. För ett plant kraftsystem förenklas vektorekvationen till den 'skalära' ekvationen för z-riktingens komponent (upp ur xy-planet): x A F y " y A F x = M O Detta är ett samband för en linje i ( x, y )-planet, men det räcker att hitta en punkt på linjen, t.ex där y = y A = 0. Alltså har vi resultantens läge i planet givet av " r A = M % O $,0 # F ', samt längs verkningslinjen. y & Komihåg: En krafts angreppspunkt kan fritt väljas längs kraftens verkningslinje!! JÄMVIKTER Definition: Föremål i jämvikt: Det finns en icke-roterande och icke-accelererande referensram (dvs inertialsystem) där föremålet befinner sig i vila. Jämviktslag: Jämvikt kräver (nödvändigt) för godtycklig resultant 1) F = 0 2) M P = 0 (alla momentpunkter P)

10 10 Detta är förutsättningen för att ett föremål ej börjar röra sig = börjar translation+rotation.

11 11 Jämviktsproblem 3 kn A 1.2 m 2.4 m B Problem: En homogen och likformig balk har en massa /längd given av 60 kg/m. Bestäm reaktionskrafterna i stödpunkterna A och B. Lösning: Fritt vridbar led i A representeras av en s.k. enkraftsresultant i planet. Fri rullkontakt i B representeras av en vertikal normalkraft. Totala tyngdkraften kan skrivas som en enkraftsresultant W som angriper i mitten på balken. 3 obekanta! 3 ekvationer krävs! Frilägg balk! A y A x F 2d B d W 3d/2 Jämvikt kräver: " A x = 0, " A y + B # F #W = 0, A!Fd! W( 3d / 2) + B( 3d) = 0 och där vi infört: d =1.2 m, W = 60 " 9.81" 3.6 N = 2120 N Vi löser ut obekanta ur de två sista ekvationerna: A y = 2 3 F W, B = 1 3 F W

12 12 A α N A N B mg B Problem: Ett glatt homogent klot med massan m vilar mot två plana hårda ytor enligt figuren. Bestäm kontaktkrafternas storlek. Lösning: Kraftanalys: Det finns ingen friktion vid kontaktytorna enligt uppgift, endast tyngdkraften och normalkrafterna beaktas. Vi bestämmer N A > 0 och N B > 0 på följande sätt. Den plana jämvikten kräver: N A cos" # mg = 0, N A sin" # N B = 0, dvs N A = mg cos", N B = mg tan".

13 13 Typiska resultanter Leder - Glatt led: - Ej glatt led: Inre spänningskrafter De krafter som uppkommer i och verkar på en snittyta mellan två delsystem i samma kropp representeras av två motriktade resultanter, som verkar på vardera delsystem. F j M M R R

14 14 Problem: Betrakta en smal, homogen balk i jämvikt som är infäst i en betongvägg. Den synliga delen av balken har längd L och massa m. Rita krafter på den delen av balken som ligger bortom snittet sett från väggen! Lösning: Vi frilägger (ritar krafter, kraftmoment och identifierar dessa) den högra (fria) delen av balken. M R L-x W W betecknar tyngdkraft. R och M utgör resultant från den andra delen av balken som angriper i snittet.

15 KOMIHÅG 5: Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c) Beräkningar Föreläsning 6: MASSCENTRUM Diskret eller kontinuerlig fördelning av tyngdkrafter: Masscentrum en balanspunkt för vridningar: Kroppen kan ha olika orienteringar, men en axel genom en viss punkt (masscentrum) lämnar kroppen i vila. b) 15 a) a) mg mg Streckade linjer är enkraftsresultantens verkningslinjer för två olika kroppsorienteringar a) och b).

16 Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O = " r j # m j g = " m j r j ( ) # g. Det finns enkraftsresultant eftersom alla enskilda kryssprodukter och det totala momentet M O "g. Dvs, alla krafter och även kraftsumman är ortogonala mot M O. Ersätt alla tyngkrafter med en total tyngdkraft mg i någon punkt r G så att M O = r G " mg, eller om vi flyttar massan i formeln: M O = mr G " g. Vi ser att överensstämmelse med 16 sidans första formel kräver r G = -- Punktpartiklar "m j r j m. "m j r j r G = ( x G,y G,z G ) = m. -- Kontinuerlig massfördelning: Massan M är fördelad inom volymen V. ( ) = 1 M dmr r G = x G,y G,z G " = 1 M M " dm dv r dv V För homogena föremål är densiteten konstant (lika med M/V) och kan flyttas utanför integralen, dvs r G = ( x G,y G,z G ) = 1 " dm M dv r dv = 1 " V r dv (homogent) V V

17 Masscentrum för sammansatta kroppar: Ibland sätts enkla kroppar ihop till något mer komplicerat. För sammansatta kroppar: "( m) j r gj j r G =, ( m) j " j där de enkla delkropparnas masscentra (numrerade med index j) antas ha kända lägen r gj, eller för kontinuerlig massfördelning av kända masselement: r G = 1 M " dmr. g M 17 Exempel: Kontinuerliga massfördelningar kan ibland ses som en mängd ihopklistrade strimlor av samma form. a) En rektangel kan ses som en packe av tunna raka remsor. b) En cirkulär skiva kan ses som en packe av tunna cirkulära remsor.

18 Jämviktsproblem Problem: Betrakta en smal, homogen balk i jämvikt som är infäst i en betongvägg. Den synliga delen av balken har längd L och massa m. Studera det inre momentet i ett snitt på avståndet x från väggen. Lösning: Vi frilägger den högra (fria) delen av balken. M R L-x 18 W Eftersom de enda yttre krafterna på yttre delen av balken, representerade av tyngdkraftens resultant # W = m $ % L ( L " x) & '( g, är vertikala kan vi från början ansätta en inre vertikal tvärkraftsresultant R, samt ett inre moment M. För momentjämvikt av yttre delen av balken med avseende på snittpunkten fås M + 1 ( 2 L " x $ ) mg L # ( L " x ' & )) = 0, dvs % ( M = " 1 mg ( 2 L L " x ) 2, (dvs moturs) Det inre momentet ökar kvadratiskt in mot infästningen!!

19 19 P r Problem Ett homogent halvcylinderskal hålls i jämvikt på ett horisontellt underlag med ett horisontellt snöre. Bestäm den friktionskraft som behövs för en given lutningsvinkel ". Ledtråd: Masscentrums läge är beläget på avståndet 2r/ " från skalets centrum längs tvärsnittets symmetrilinje. Redovisa införda beteckningar.

20 20 Lösning Vi inför beteckningar enligt figuren. Jämvikt kräver: N = mg och P = F µ. Momentjämvikt med avseende på cirkelcentrum ger dessutom: $ 2 ' & rmg # rp) sin* # rf %" ( µ = 0 dvs F µ = 2mgsin" #(1+ sin").,

KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA

KOMIHÅG 2: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA 1 KOMIHÅG 2: --------------------------------- Kraft är en vektor me angreppspunkt och verkningslinje. Kraftmoment: M P = r PA ", r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoene av om

Läs mer

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.

 = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G. 1 KOMIHÅG 6: --------------------------------- Masscentrum: --3 partiklar: r G = ( x G,y G,z G ) = m r + m r + m r 1 1 2 2 3 3 M --Kontinuum: ( ) = 1 M dmr r G = x G,y G,z G " = 1 M ----------------------------------

Läs mer

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

Biomekanik, 5 poäng Moment

Biomekanik, 5 poäng Moment (kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en

Läs mer

FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN

FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN Repetera de övningsuppgifter som kännts besvärliga. Om du behöver mera övning så kan du välja fritt bland de övningsuppgifter i Problemsamlingen som överhoppats.

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Tentamen i SG1140 Mekanik II. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen 010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap om mekanik. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter

Läs mer

Tentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!

Tentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas! 2015-06-08 Tentamen i Mekanik I SG1130, baskurs P1 och M1. KTH Mekanik OBS: Inga hjälpmede förutom rit- och skrivdon får användas! Problemtentamen 1. Ett homogent halvcylinderskal hålls i jämvikt på ett

Läs mer

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB . Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse

Läs mer

Uppgifter till KRAFTER. Peter Gustavsson Per-Erik Austrell

Uppgifter till KRAFTER. Peter Gustavsson Per-Erik Austrell Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter... 3 2 Krafter... 5 A-uppgifter... 5 B-uppgifter... 5 3 Moment... 7 A-uppgifter... 7 B-uppgifter...

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,3,4)P, r 2 2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Stelkroppsmekanik partiklar med fixa positioner relativt varandra

Stelkroppsmekanik partiklar med fixa positioner relativt varandra Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 4

LEDNINGAR TILL PROBLEM I KAPITEL 4 LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z ) 1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix

Läs mer

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen 010-06-07 Tentamen i Mekanik SG1130, baskurs P1 OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1 Problemtentamen En homogen mast med massan M och längden 10a hålls stående i vertikalt

Läs mer

Introduktion till Biomekanik - Statik VT 2006

Introduktion till Biomekanik - Statik VT 2006 Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)

Läs mer

mm F G (1.1) F mg (1.2) P (1.3)

mm F G (1.1) F mg (1.2) P (1.3) Sid 1-1 1 1.1 Krafter och moment Inledning örståelsen för hur olika tper av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom bggnadskonsten. Gravitationskraften

Läs mer

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Om den lagen (N2) är sann så är det också sant att: r  p = r  F (1) 1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2011-10-22 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Den kvadratiska skivan i den plana mekanismen i figuren har

Läs mer

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål. 1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Välkommen! Till Kursen MEKANIK MSGB21. Föreläsningar & kursansvar:

Välkommen! Till Kursen MEKANIK MSGB21. Föreläsningar & kursansvar: Välkommen! Till Kursen MEKANIK MSGB21 Föreläsningar & kursansvar: Hans Johansson 21F226 Övningar: Lennart Berglund 21F227 Jens Ekengren 21D215 Anders Gåård 21F229 Sekreterare: Marika Johansson 21F218 Ur

Läs mer

Till Kursen MEKANIK MSGB21

Till Kursen MEKANIK MSGB21 Välkommen! Till Kursen MEKANIK MSGB21 Kursansvar: Hans Johansson 21F226 Föreläsningar: Hans Johansson & Anders Gåård Övningar: Anders Gåård 21F229 Mikael Åsberg 21D209 Hans Johansson 21F226 Sekreterare:

Läs mer

2.2 Tvådimensionella jämviktsproblem Ledningar

2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Sfären påverkas av tre krafter. Enligt resonemanget om trekraftsystem i kapitel 2.2(a) måste krafternas verkningslinjer då skära varandra i en punkt,

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Biomekanik Belastningsanalys

Biomekanik Belastningsanalys Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar

Läs mer

LÖSNINGAR TENTAMEN MEKANIK II 1FA102

LÖSNINGAR TENTAMEN MEKANIK II 1FA102 LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Obs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer!

Obs: Använd vektorstreck för att beteckna vektorstorheter. Motivera införda ekvationer! 1) m M Problemlösningar µ α α Lösning: Frilägg massorna: T N N F µ T Mg mg Jämvikt för M kräver T Mgsin α = 0 (1) a) Gränsfall F µ = µ N men jämvikt för m kräver: N mg cosα = 0 (2) T µ N mgsinα = 0 (3)

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

KRAFTER. Peter Gustavsson Per-Erik Austrell

KRAFTER. Peter Gustavsson Per-Erik Austrell KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion

Läs mer

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling

Läs mer

Kursinformation Mekanik f.k. TMMI39

Kursinformation Mekanik f.k. TMMI39 Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

M12 Mekanikens grunder Steg 2 Krafter och moment

M12 Mekanikens grunder Steg 2 Krafter och moment M12 Mekanikens grunder Steg 2 Krafter och moment Namn: Kurs: Datum: Lektion 1: 2 Mekanikens grunder Kraft Exempel 1 Ex. 1 Rymdfärjan Columbus har just placerat ut den sista satelliten för denna gång och

Läs mer

KRAFTER. Peter Gustavsson Per-Erik Austrell

KRAFTER. Peter Gustavsson Per-Erik Austrell KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion

Läs mer

Introhäfte Fysik II. för. Teknisk bastermin ht 2018

Introhäfte Fysik II. för. Teknisk bastermin ht 2018 Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K

S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K S T E FA N B. L I N D S T R Ö M F Ö R E L Ä S N I N G A R I S TAT I K Föreläsningar i statik Lindström, Stefan B. Copyright c 2013 Stefan B. Lindström Publicerad av Stefan Lindström, Linköping. https://sites.google.com/site/lindstroemepublicering

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Lösningar Heureka 2 Kapitel 2 Kraftmoment och jämvikt

Lösningar Heureka 2 Kapitel 2 Kraftmoment och jämvikt Lösningar Heureka Kapitel Kraftmoment och jämvikt Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel.1) Vi väljer en vridningsaxel vid brädans kontaktpunkt med ställningen till vänster,

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

Introduktion till Biomekanik - Statik VT 2006

Introduktion till Biomekanik - Statik VT 2006 http://apachepersonal.miun.se/~petcar/biomekanikintro.htm Innehåll Terminologi inom biomekanik. Skelettets, musklernas, senors och ligamentens funktion och uppbyggnad. Statik, kinematik och kinetik. Idrotts-

Läs mer

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 2

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 2 Mekanik Del tatik- och artikeldynamik 05 Utgåva öreläsningar i Mekanik (M0) Del: tatik och partikeldynamik Läsvecka öreläsning : Jämvikt jämviktsvillkor statiskt obestämda kraftsystem (/-/). Jämvikt: Rörelse

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Arbete och effekt vid rotation

Arbete och effekt vid rotation ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

S TAT I K O C H D Y N A M I K

S TAT I K O C H D Y N A M I K S T E FA N B. L I N D S T R Ö M U P P L A G A 1 F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H D Y N A M I K Statik och dynamik Stefan B. Lindström upplaga 1 ISBN 978-91-981287-2-7 Copyright

Läs mer

Tentamen Mekanik MI, TMMI39, Ten 1

Tentamen Mekanik MI, TMMI39, Ten 1 Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

S T E FA N B. L I N D S T R Ö M U P P L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K

S T E FA N B. L I N D S T R Ö M U P P L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K S T E FA N B. L I N D S T R Ö M U L A G A 2 β F Ö R E L Ä S N I N G A R I S TAT I K Föreläsningar i statik Stefan B. Lindström upplaga 2 β Copyright c 2016 Stefan B. Lindström ublicerad av Stefan Lindström,

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

S TAT I K O C H PA R T I K E L D Y N A M I K

S TAT I K O C H PA R T I K E L D Y N A M I K S T E FA N B. L I N D S T R Ö M U P P L A G A 2 - β F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H PA R T I K E L D Y N A M I K Föreläsningar i mekanik: Statik och partikeldynamik Lindström,

Läs mer

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet

Läs mer

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A

Föreläsning 5: Acceleration och tidsderivering (kap ) . Sambandet mellan olika punkters hastigheter i en stel kropp: v A 1 Föreläsning 5: Acceleration och tidsderivering (kap 212-215) Komihåg 4: Vinkelhastighetsvektorn " = # e z Skillnadsvektorn mellan två punkter i stel kropp kan bara vrida sig: r BA = " # r BA Sambandet

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng

Läs mer

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110]

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110] Extrauppgifter Vridmoment version 0.11 [131110] Christian Karlsson Uppgiterna 4.29 4.32 tar upp några saker som boken inte tar upp och bör göras med extra mycket eftertanke. Uppgifterna 4.33 4.40 är blandade

Läs mer

Föreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot

Föreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot 1 Föreäsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap 3113 Komihåg 8: Tröghetsmoment = r dm = x + y dm m m Kinetisk energi för roterande stet system: T rot = 1 Röresemängdsmomentets zkomponent:

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk

3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk 3 Fackverk 3.1 Inledning En struktur som består av ett antal stänger eller balkar och som kopplats ihop med mer eller mindre ledade knutpunkter kallas för fackverk. Exempel på fackverkskonstruktioner är

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

S TAT I K O C H PA R T I K E L D Y N A M I K

S TAT I K O C H PA R T I K E L D Y N A M I K S T E FA N B. L I N D S T R Ö M U P P L A G A 2 - β F Ö R E L Ä S N I N G A R I M E K A N I K S TAT I K O C H PA R T I K E L D Y N A M I K Föreläsningar i mekanik: Statik och partikeldynamik Lindström,

Läs mer

KOMPLETTERINGAR TILL FYSIK A FÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET N 2. Juni 2006 NILS ALMQVIST

KOMPLETTERINGAR TILL FYSIK A FÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET N 2. Juni 2006 NILS ALMQVIST KOMPLETTERINGAR TILL YSIK A ÖR TEKNIK/NATURVETENSKAPLIGA BASÅRET Mg N N Juni 006 NILS ALMQVIST INSTITUTIONEN ÖR TILLÄMPAD YSIK, MASKIN- OCH MATERIALTEKNIK örord Detta kompendium och bifogade laborationshandledningar

Läs mer

Introduktion till Biomekanik - Statik VT 2006

Introduktion till Biomekanik - Statik VT 2006 Pass 2 Aktions- reaktionskraft Nu är det dags att presentera grundstenarna inom Mekanik Newtons lagar: 1. Tröghetslagen: En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer