Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,
|
|
- Kristina Andersson
- för 9 år sedan
- Visningar:
Transkript
1 Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för 0 Z (TME07), S = x xy xz xy y yz A xz yz z I xy-planet varierar normal oc skjuvspänningar. På ytan av en kropp råder plant spänningstillstånd, oc i en viss punkt enligt: verkar (enbart) skjuvspänningen xy =.5MPa. < (') = a) Bestäm x + y + uvudspänningsriktningarna. x y cos(')+ xy sin(') (p) : x y (') = sin(')+ b) Beräkna von Mises xy cos(') effektivspänning i punkten. (p) a) Formelsamlingen (FS) avsnitt ger oss Speciellt flera för sätt xz att = lösa yz =0fås detta. Ett är att använda formlerna b) FS avsnitt säger att Sätt in alla spänningar = 0 utom ( I)n = 0 ) det( I) =0 där är töjningsmatrisen x xy / xz/ xy/ y yz /A xz/ yz/ z Spännings- oc töjningstillstånd i ett plan Analogt för töjningar: < (') = x + y + x y cos(')+ : (') = x y sin(')+ Speciellt för xz = yz =0fås uvudspänningarna = z oc, = >< ( x + y ) ± R sin( )= xy R >: cos( )= x y R där ' = är riktning till oc s x y R = + xy xy cos(') xy sin(') uvudtöjningarna = z oc, = >< ( x + y ) ± R sin( )= xy R >: cos( )= x y R med, i detta fall, x = y =0, xy =.5MPa Det ger direkt att uvudspänningsriktningarna är vridna 45 jämfört med x- oc y-riktningarna. där ' = är riktning till oc s x y R = + xy/4 Di erentialekvationen för tjockväggigt rör plan cirkulär skiva 9 E ektivspänningar von Mises: Tresca: vm e = q x + y + z x y y z z x + xy + yz + zx = = p p ( ) +( ) +( ) xy =.5MPa i den första raden, så fås q xy = p xy.6mpa T e =max(,, ) Di erentialekvationen för tjockväggigt rör plan cirkulär skiva Elastisk axisymmetrisk skiva utsatt för plan spänning ( z = rz = 'z =0)samtenbartbelastning i r-led: d dr r vm e = e ektiv vonmises = d dr (u rr) + E K r =0 ösningsskisser TME Sidan (av 6) Allmän lösning: Z u r = A r + A /r /r Z ( ) K r r dr dr E villkor.
2 . En balk ABC ar formats i 45 :s vinkel som figuren antyder, oc kan alltså betraktas som två sammanfogade balkar, vardera av längden. Balkmaterialets elasticitets- modul är E, oc balktvärsnittets yttrögetsmoment är I; båda är konstanta. Momentfria infästningar finns i A, B oc C. En jämnt fördelad last av totala storleken Q anbringas på stycket AB. Bestäm vilken vinkel som AB vrider sig runt punkten B. (5p) Inför vridningsvinkeln θ som i figuren till öger. Dela upp balken i två delar som antyds i de två nedre figurerna till öger. I FS, elementarfall 6. finns allt vi beöver veta: Elementarfall balkböjning 9 6. Fri uppläggning W W W P P M M m m p p R R a b / / a > < 4 EI? = > b : 4 EI 4 a, om a / 4 b, om a / För den mellersta figuren till öger ser vi att vi kan sätta M = MB oc W = Q/, oc kan avläsa M M P P W W W = m =. För den nedersta ögra figuren kan vi vända upp EI ( M B)+ 4EI Q oc ned på det ela, oc sätta M = MB oc p.s.s. få = m =. Vi ar alltså två EI M B ekvationer för de två obekanta θ oc MB, oc kan lösa ut R = R = m = m = p = p = b EI b a EI 4 EI a? a b a b? b 4 EI a 4 EI = Q 4EI a b EI a 4 EI EI a + a a 60 EI EI 45 EI EI 7 0 a + a4 4 a a 4 EI a a 4 EI a i a i a ösningsskisser TME Sidan (av 6)
3 . Ett öppet tunnväggigt cylindriskt rör påverkas av ett vridande moment M0, ett inre övertryck p samt en normalkraft N0. Rörets medelradie är r, oc godstjockleken. Bestäm uvudspänningarna i en punkt på rörets inre yta. (5p) [Förenkla inte svaret alltför långt! Kursen andlar inte om algebraisk fingerfärdiget.] Balkar Betrakta ett litet element enligt figuren nedan. Normalkraften N0 bidrar till normalspänningen i z-led, oc eftersom röret är öppet bidrar inte övertrycket till σz: Axlar GK v =vridstyvetelastiskaxel '(x) = vridningsvinkeln (x) =d'/dx = /r = deformation (förvridning) M v = GK v =snittvridmoment f(x) =yttrelast(vridmoment/längd) Enligt FS avsnitt 9 ger övertrycket dock bidrag till normalspänningen i φ-led: Det pålagda vridande momentet slutligen bidrar till τzφ enligt FS avsnitt : så vi ar z' = M 0. r z = N 0 r Jämvikt: dm v /dx = f(x) ' = pr För cirkulärt tvärsnitt fås spänningen som: (x, r) =M v (x)r/k v (x) Av de övriga spänningarna på insidan av röret är det bara normalspänningen i radiell led som är nollskild, även om den är liten jämfört med normalspänningen i vinkelled ovan, så vet vi inte om den är liten jämfört med de övriga spänningarna i zφ-(tangent)planet. Spänningsmatrisen blir alltså: 0 0 S r 0 0 p ' z' A pr M 0 0 A r M 0 z' z 0 0 N 0 r r (forts. följer.) ösningsskisser TME Sidan (av 6) ) d dx GK v d' dx = f För tunnväggigt cirkulärt tvärsnitt (väggtjocklek t, medelradie r) fås spänningen som: (x, r) =M v (x)/( r t) För ett godtyckligt tunnväggigt slutet tvärsnitt med av medellinjen s innesluten area A m,väggtjocklek t(s) ocminstaväggtjocklek t min : max = M v /( A m t min ), K v = 4 A m H ds t(s) Snittmoment vid genomplasticerat (antag elastiskt idealplasticitet) tjockväggigt cirkulärt tvärsnitt (ytterradie b, innerradie a): M vf = (b a ) s Balkar EI y =böjstyvet w(x) =transversellförskjutning (x) = d w/dx = deformation (krökning) Jämvikt: dm/dx = T,dT/dx = q )
4 (forts. från föregående sida.) Huvudspänningarna fås nu som egenvärdena till S. ös sekularekvationen det(s σ I) = 0: 0= r ' z' 0 z' z =( r )(( ' )( z ) z') =( r )( ( ' + z ) + ' z z') Den ena uvudspänningen är uppenbart = r = p. De två övriga fås som rötter till andragradsekvationen ( ' + z ) + ' z z' =0 oc är alltså r ' + z ( ' + z ) = ± ( ' z 4 z') v pr = 0 u r ± t ( pr + N! 0 r ) pr N 0 M0 4 r r De tre uvudspänningarna är alltså v pr p oc + N 0 u r ± t ( pr + N 0 r ) 4 pr N 0 r! M0 r ösningsskisser TME Sidan 4 (av 6)
5 4. En slank balk är infäst som figuren antyder. En kraft P anbringas i balkens övre ände. Balken ar tvärsnittsarean A, yttrögetsmomentet I oc elasticitetsmodulen E. Balkmaterialets flytspänning vid tryck är yield = 00. Balkens tvärsnitt är omogent, kvadratiskt med sidan a, där a = /0. P ökas sakta från 0. Vad inträffar först: Flytning eller knäckning? (5p) (Bortse från säkeretsfaktorer etc. Svaret skall motiveras utförligt!) E Flytning sker då P blivit så stor att E 00 = yield = = P A = P a = 0 P ) P = P yield = E Knäckning enligt Eulers fjärde knäckningsfall (FS avsn. ) sker då P blivit så stor att P = P Euler 4 = 4 EI = FS avsn. 5, I y för rektangel med b = a. Vilken av dessa är krafter är minst, oc uppnås alltså först? Alltså: knäckning inträffar först. = 4 E ( 0 )4 P Euler 4 P yield = 4 E 0 4 = = 0. < E Tabell: tvärsnittsdata 5 5 Tabell: tvärsnittsdata YTA YT- CENTRUM YTSTORHETER I y = ba I y = ba I z = ab I z = ab ösningsskisser TME Sidan 5 (av 6) y = a + b z = I y = b I y = b
6 5. En elt stel balk är fäst i två identiska, omogena jämntjocka stänger AB oc CD som figuren visar. Stängerna ar tvärsnittsarean A oc elasticitetsmodulen E. En kraft P anbringas i balkens en ände som figuren antyder. Bestäm vilken vinkel den stela balken vrides när P anbringas. (5p) Frilägg den stela balken oc inför stångkrafterna oc tvångskrafterna från den momentfria leden. åt beteckna punkten där leden fäster i balken. (Observera mitt val av referensriktningar! Du får givetvis välja andra!) Jämviktsekvationerna för balken är ><!: R H = 0 () ": N A + R V N C P = 0 () >: x : NA d + N C d P d = 0 () Tre ekvationer men fyra obekanta. RH kan lösas ur (), men då återstår endast de två ekvationerna () oc () för de tre obekanta NA, NC, RV. Vi måste ta änsyn till stängernas deformation. Geometrin ger direkt att om AB förlängs sträckan δ, så förkortas CD sträckan δ: Hookes lag ger " AB =, " CD = 9 N A A = AB = E" AB = E = N C A = CD = E" CD = E Vi ar därmed en ytterligare ekvation. Ur () oc (4) löser vi lätt NA = NC = P/. Hookes lag ger = P. Betrakta nu den rätvinkliga triangeln EA Den sökta vridningsvinkeln, betecknad θ i triangeln, fås då som sin = = P d dea ; ) N A = N C (4) ösningsskisser TME Sidan 6 (av 6)
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
TENTAMEN I KURSEN BYGGNADSMEKANIK 2
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
1. Ett material har dragprovkurva enligt figuren.
1. Ett material har dragprovkurva enligt figuren. a) Vad kallas ett sådant materialuppträdande? b) Rita i figuren in vad som händer vid avlastning till spänning = 0 från det markerade tillståndet ( 1,
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
Material, form och kraft, F11
Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning
Hållfasthetslära Sammanfattning
2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar
Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir
8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:
Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
LÖSNING
.01 1. En balk ska tillverkas genom att man limmar ihop två lika rektangulära profiler, vardera med måttet. Man kan välja att limma antingen enligt alternativ (a) eller alternativ (b) i nedanstående tvärsnittsfigurer.
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
Lunds Tekniska Högskola, LTH
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08
TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-0-3 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
LÖSNING
TMHL09 2013-05-31.01 (Del I, teori; 1 p.) Strävan i figuren ska ha cirkulärt tvärsnitt och tillverkas av antingen stål eller aluminium. O- avsett vilket material som väljs ska kritiska lasten mot knäckning
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09
TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-08-8 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)
Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Hållfasthetslära Z2, MME175 lp 3, 2005
Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling
Biomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams
Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
LÖSNING
.01 (Del I, teori; 1 p.) 1. En fast inspänd balk med kontinuerlig massfördelning enligt figuren utför fria svängningar. Visa med enkla skisser hur 1a och 2a egensvängningsmoderna frihetsgraderna ser ut..02
Tentamen i Hållfasthetslära AK2 för M Torsdag , kl
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts
Material, form och kraft, F9
Material, form och kraft, F9 Repetition Skivor, membran, plattor, skal Dimensionering Hållfasthet Styvhet/Deformationer Skivor Skiva: Strukturelement som är tunt i förhållande till utsträckningen i planet
Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag
Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:
Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord
K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.
K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)
DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ENAMEN I HÅFASHESÄA F MHA 8 5 AI 5 ösningar id och plats: 8.3.3 i V huset. ärare besöker salen 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:
Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6)
Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6) Spänningar i jord Olika spänningstillstånd Krafter och spänningar i ett kornskelett Torrt kornskelett Vattenmättat
2.2 Tvådimensionella jämviktsproblem Ledningar
2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Sfären påverkas av tre krafter. Enligt resonemanget om trekraftsystem i kapitel 2.2(a) måste krafternas verkningslinjer då skära varandra i en punkt,
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30
Material, form och kraft, F5
Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning
------------ -------------------------------
TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.
Matematiska uppgifter
Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av
ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
Material, form och kraft, F2
Material, form och kraft, 2 Repetition Genomgång av orcepd uppgift 1 Spänning Töjning Huvudspänning Stvhet Krafter Krafter Vektorstorhet: storlek, riktning, angreppspunkt Kontaktkraft, kraft som verkar
2 november 2016 Byggnadsmekanik 2 2
Byggnadsmekanik 2 Välkommen! 2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Kursen är en fortsättning i byggnadsmekanik och hållfasthetslära med inriktning mot byggnadskonstruktion. I kursen behandlas
Övningstenta: Lösningsförslag
Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013
Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013 Utvecklingen av fysiska produkter och utforskandet av världen kräver kunskap om hur material, komponenter, och strukturer
KOMIHÅG 3: Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P. = r PA
1 KOMIHÅG 3: --------------------------------- Kraft är en vektor med angreppspunkt och verkningslinje. Kraftmoment: M P = r PA " F, r P =momentpunkt, r A angreppspunkt, r PA = r A " r P. - Oberoende av
u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)
ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
B3) x y. q 1. q 2 x=3.0 m. x=1.0 m
B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,
2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.
Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?
Kompletterande formelsamling i hållfasthetslära
Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr
Moment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
6. Räkna ut integralen. z dx dy dz,
Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga
Hjälpmedel: Tore Dahlbergs formelsamling, TeFyMa eller någon annan liknande fysik- eller matematikformelsamling, valfri miniräknare, linjal, passare
Mekaniska konstruktioner Provmoment: Tentamen Ladokkod: 41I30M Tentamen ges för: Af-ma3, Htep2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 12 januari
Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008
T Dahlberg, Hållfasthetslära/IEI (f d IKP) tel 013-28 1116, 070-66 511 03, torda@ikp.liu.se Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008 Utbildningsområde: Teknik Ämnesgrupp:
Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005
Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A
Material, form och kraft, F4
Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan
Formelblad, lastfall och tvärsnittsdata
Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning:
Tentamen i. Konstruktionsteknik. 26 maj 2009 kl
Bygg och Miljöteknolo gi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 26 maj 2009 kl. 8.00 13.00 Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter kan
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson
Hållfasthetslära VT2 7,5 p halvfart Janne Carlsson Torsdag 30:e Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Fortsättning från föreläsning 1 Rast Föreläsning
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-05-31, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: G32, G33, G34, G35, G36 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna första
Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning
Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation
Hållfasthetslära; grundkurs för M2, kurskod TMHL22, läsperiod 1, ht 2017
; grundkurs för M2, kurskod TMHL22, läsperiod 1, ht 2017 Allmänt: Kursen löper över en läsperiod. Tentamen kommer att ges efter läsperiodens slut. För godkänd kurs krävs godkänt på skriftlig tentamen samt
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480
2002-04-04:anek TENTAMEN I HÅFASTHETSÄRA FÖR I2 MHA 051 6 april 2002 08.45 13.45 (5 timmar) ärare: Anders Ekberg, tel 772 3480 Maximal poäng är 15. För godkänt krävs 6 poäng. AMÄNT Hjälpmedel 1. äroböcker
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
Kursprogram Strukturmekanik VSMA20
Kursprogram Strukturmekanik VSMA20 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till strukturmekanik tillämpad på konstruktionstyper
Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal
Textil mekanik och hållfasthetslära Provmoment: tentamen Ladokkod: 51MH01 Tentamen ges för: Textilingenjörsprogrammet TI2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund
Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund Besöksadress: Osquars backe 1, 2 tr Telefon: 08-790 7542 e-post: soren@kth.se Lärandemål Efter avslutad kurs skall
Matematiska uppgifter
Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,
Kursprogram Strukturmekanik FME602
Kursprogram Strukturmekanik FME602 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper
Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.
1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)
H Å L L FA S T H E T S L Ä R A
L I N D S T R Ö M ( R E D. ) U P P L A G A 1 - β P R O B L E M S A M L I N G H Å L L FA S T H E T S L Ä R A Denna problemsamling är riktad till ingenjörsstudenter på teknisk högskola, och omfattar problem
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov
Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning