Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning

Storlek: px
Starta visningen från sidan:

Download "Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning"

Transkript

1 Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen. Fenomenet kallas tvärkontraktion och är materialberoende (olika material har olika stor tvärkontraktion). I kraften längsriktning gäller, som förut att töjningen är δ ε long =, där δ är förlängning i axiell led och L är ursprunglig längd. L I radiella riktningen, tvärs mot den axiella riktningen gäller (med bokens beteckningar) ε lat δ = r För töjningen i tvärriktningen har experiment visat att följande samband gäller ν ε ε lat = där υ (ny) är Poissons tal eller tvärkontraktionstalet. long Minustecknet säger att dimensionerna minskar tvärs belastningen om kroppen förlängs i axiella riktningen (och vise versa). P. Carlsson 1

2 Poissons tal υ är en materialkonstant liksom E- och G-modulerna. Det finns ett samband mellan de tre materialkonstanterna υ, E och G. Man kan visa att följande samband gäller: G = E 2(1 + υ) Man kan alltså, om t.ex. elasticitets- och skjuvmodul (E och G) är kända räkna ut Poissons tal för ett material. I det allmänna, fleraxliga fallet med belastningar i flera riktningar blir sambanden mer komplicerade mellan töjningar, mer om detta senare. Ex 1. En provstav av aluminium har en diameter d 0 = 25 mm och en ursprunglig mätlängd L 0 = 250 mm. Om staven vid en belastning av 165 kn förlängs 1.20 mm, bestäm vilken E-modul staven har. Bestäm också hur stor diameterminskningen blir under belastningen. Vi förutsätter att mätningen sker inom det elastiska området och att G al = 26 GPa. Svar: E al = 70GPa, Δd = -0,0415 mm P. Carlsson 2

3 Temperaturens inverkan - Värmespänningar Temperaturändringar kan orsaka att ett material ändrar dimensioner Det vanliga är att material utvidgar sig vid temperaturhöjningar och krymper vid fallande temperatur. Som regel finns ett linjärt samband mellan dimensionsändringarna och temperaturändringarna och sambandet brukar tecknas δ T = αδtl där α är en materialkonstant, den s.k. temperaturutvidgningskoefficienten (coefficient of linear expansion), ΔT är temperaturskillnaden, L är ursprungslängden och δ T är förlängningen på grund av temperaturändringen. Ett annat sätt att uttrycka sambandet på är där ε T = δ T /L. ε T = αδt I de fall där man också måste ta hänsyn till temperaturändring i materialet får Hookes lag utseendet σ ε = ε spänning + ε temperatur = + αδt E Ur uttrycket ovan kan man utläsa att om den totala töjningen ε förhindras (ε = 0) kommer lokala temperaturändringar att ge upphov till spänningar i materialet. Man får temperatur- eller värmespänningar i materialet. P. Carlsson 3

4 Ex 2. En linbana har en åklängd av 1200 m. Hur mycket ändrar sig längden på vajern mellan dag till natt om temperaturen sjunker från +5 o till -12 o? Vajern är av stål, α st = / o C. Svar: δ = 0,49 m (förkortning) Ex 3. En mässingscylinder är avpassad för att precis passa mellan två fasta väggar enligt figur när temperaturen är 18 o C. Bestäm hur stora värmespänningar det blir i cylindern om temperaturen stiger till 30 o C. Cylindern har diametern 50 mm, E m = 100 GPa och α m = / o C. Hur stor blir kraften mellan väggarna och cylindern efter temperaturhöjningen? 1 m Svar: σ = 25,2 MPa, F = N P. Carlsson 4

5 Statiskt obestämda, axiellt belastade kroppar Ett system kallas statiskt obestämt om det inte är möjligt att bestämma inre krafter i det genom att enbart ställa upp jämviktsekvationer. Även i till synes enkla anordningar kan statisk obestämdhet finnas. Ex 4. Nio armeringsjärn med 25 mm diameter (E = 200 GPa) används för att förstärka en kort pelare av betong (E = 30 GPa) enligt figur. En axiell last P = 650 kn läggs på överdelen som består av ett stelt lock som fördelar kraften jämt över ytan. Bestäm a) Normalspänningarna i betongen och armeringsjärnen. b) Hur mycket pelaren trycks ihop. Svar: a) σ st = 49,5 MPa, σ betong = 7,43 MPa b) δ = 0,149 mm P. Carlsson 5

6 En liknande typ av statisk obestämdhet uppträder i följande exempel. Här gäller inte längre att de okända deformationerna i materialen är lika stora. De är dock kopplade till varandra genom anordningens geometri. Ex 5. Balken AB har en längd av 4 m och är ledat upphängd vid väggen i punkt A. Balken hålls upp av två identiska aluminiumstänger med diametern 25 mm och E-modulen E al = 70 GPa. Bestäm krafterna och spänningarna i aluminiumstängerna då kraften 25 kn läggs i högra ändan enligt figur. Antag att balken AB är stel i förhållande till aluminiumstängerna. Balken egentyngd försummas. Svar: F CD = 10 kn, F EF = 30 kn, σ CD = 20,4 MPa, σ EF = 61,1 MPa P. Carlsson 6

7 Mer om material Vad går att utläsa ur ett σ - ε diagram? Ductile material = segt (duktilt) material Brittle material = Sprött material Det övre materialet kan ta upp högre spänningar vid motsvarande deformationer Vid alltför höga belastningar får man kvarstående deformationer i materialet. När det elastiska området överskrids uppför sig inte materialet som en fjäder längre, man säger att materialet plasticerar. P. Carlsson 7

8 Idealiserade materialmodeller Material a) Helt stelt material, deformeras inte ens av höga belastningar. b) Linjärt elastiskt material. c) Stelt perfekt plastiskt material d) Linjärt perfekt elastiskt material e) Stelt linjärt plastiskt material f) Linjärt elastiskt linjärtplastiskt Temperaturinverkan på hållfastheten Många material blir spröda vid låga temperaturer Material som är duktila (sega) vid normala temperaturer kan vid låga temperaturer uppföra sig som spröda material. Vid höga temperaturer börjar många material krypa (långsamt flyta). Aktuellt för t.ex. turbinskovlar i flygplansmotorer. P. Carlsson 8

9 Sprödbrott på grund av sämre, temperaturkänsligt stål i fartygsplåtarna (1943) Sprödbrott i dragprovstav P. Carlsson 9

10 Legeringsämnens inverkan på hållfastheten Stål kan genom olika legeringsämnen ges ökad hållfasthet. (De får med andra ord ökad förmåga att ta upp stora belastningar utan att plasticera eller brista.) Legeringsämnena påverkar i ganska ringa grad stålets E- modul, se diagram bredvid. P. Carlsson 10

11 Materialjämförelser Materialjämförelser i spännings töjningsdiagram. P. Carlsson 11

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning

Läs mer

Spänning och töjning (kap 4) Stång

Spänning och töjning (kap 4) Stång Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)

Läs mer

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson Hållfasthetslära HT1 7,5 hp halvfart Janne Carlsson tisdag 11 september 8:15 10:00 Föreläsning 3 PPU203 Hållfasthetslära Förmiddagens agenda Fortsättning av föreläsning 2 Paus Föreläsning 3: Kapitel 4,

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

Biomekanik Belastningsanalys

Biomekanik Belastningsanalys Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Att beakta vid konstruktion i aluminium. Kap 19

Att beakta vid konstruktion i aluminium. Kap 19 Att beakta vid konstruktion i aluminium. Kap 19 1 Låg vikt (densitet = 2 700 kg/m3 ) - Låg vikt har betydelse främst när egentyngden är dominerande samt vid transport och montering. Låg elasticitetsmodul

Läs mer

Grundläggande maskinteknik II 7,5 högskolepoäng

Grundläggande maskinteknik II 7,5 högskolepoäng Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,

Läs mer

Material, form och kraft, F9

Material, form och kraft, F9 Material, form och kraft, F9 Repetition Skivor, membran, plattor, skal Dimensionering Hållfasthet Styvhet/Deformationer Skivor Skiva: Strukturelement som är tunt i förhållande till utsträckningen i planet

Läs mer

Material. VT1 1,5 p Janne Färm

Material. VT1 1,5 p Janne Färm Material VT1 1,5 p Janne Färm Torsdag 29:a Januari 10:15 12:00 Föreläsning M2 KPP045 Material-delen Förmiddagens agenda Materials mekaniska egenskaper del 1: Kapitel 6 Paus Provning Materials mekaniska

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson

Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson Hållfasthetslära VT2 7,5 p halvfart Janne Carlsson Torsdag 30:e Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Fortsättning från föreläsning 1 Rast Föreläsning

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Material, form och kraft, F11

Material, form och kraft, F11 Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,

Läs mer

Material, form och kraft, F5

Material, form och kraft, F5 Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas

Läs mer

Dragprov, en demonstration

Dragprov, en demonstration Dragprov, en demonstration Stål Grundämnet järn är huvudbeståndsdelen i stål. I normalt konstruktionsstål, som är det vi ska arbeta med, är kolhalten högst 0,20-0,25 %. En av anledningarna är att stålet

Läs mer

Dimensionering för moment Betong

Dimensionering för moment Betong Dimensionering för moment Betong Böjmomentbelastning x Mmax Böjmomentbelastning stål och trä σmax TP M σmax W x,max z I y M I z max z z y max x,max M W z z Bärförmåga: M R f y W Betong - Låg draghållfasthet

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

LABORATION I HÅLLFASTHETSLÄRA AK1

LABORATION I HÅLLFASTHETSLÄRA AK1 LABORATION I HÅLLFASTHETSLÄRA AK1 Laborationer i hållfasthetslära är obligatoriska moment. I AK1M sker laborationer vid två stationer och arbetet genomförs med fyra teknologer i varje grupp, vilka tillsammans

Läs mer

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir

Läs mer

Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014

Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014 Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut

Läs mer

Dimensionering i bruksgränstillstånd

Dimensionering i bruksgränstillstånd Dimensionering i bruksgränstillstånd Kapitel 10 Byggkonstruktion 13 april 2016 Dimensionering av byggnadskonstruktioner 1 Bruksgränstillstånd Formändringar Deformationer Svängningar Sprickbildning 13 april

Läs mer

Laboration i Hållfasthetslära AK1

Laboration i Hållfasthetslära AK1 Laboration i Hållfasthetslära AK1 Introduktion Laborationen är obligatorisk och innehåller två moment: stabilitet och dragprovning. Dessa utförs vid två stationer. Arbetet genomförs med fyra teknologer

Läs mer

Lunds Tekniska Högskola, LTH

Lunds Tekniska Högskola, LTH Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)

Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur. K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i

Läs mer

Introduktion till CES

Introduktion till CES Introduktion till CES TMKM14 Konstruktionsmaterial, IEI Linköpings universitet HT 2014 Inledning Den här labben består av två uppgifter. Den första är avsedd att fungera som en introduktion till CES och

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration

Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Sensorer, effektorer och fysik Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Töjning Betrakta en stav med längden L som under inverkan av en kraft F töjs ut en

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Spännbetongkonstruktioner. Dimensionering i brottgränstillståndet

Spännbetongkonstruktioner. Dimensionering i brottgränstillståndet Spännbetongkonstruktioner Dimensionering i brottgränstillståndet Spännarmering Introducerar tryckspänningar i zoner utsatta för dragkrafter q P0 P0 Förespänning kablarna spänns före gjutning Efterspänning

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

Miniräknare + Formelblad (vidhäftat i tesen) 50 p

Miniräknare + Formelblad (vidhäftat i tesen) 50 p Tillverkningsmetoder Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen A137TG TGIAF15h TGIEO16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-03-17 Tid: 09:00 14:00 Hjälpmedel: Miniräknare

Läs mer

Mekaniska Egenskaper och Brottanalys

Mekaniska Egenskaper och Brottanalys Mekaniska Egenskaper och Brottanalys Sida 1 (11) Linköpings Tekniska Högskola IEI Konstruktionsmaterial 2012-08-28 Mekaniska Egenskaper och Brottanalys TMKM11 Konstruktionsmaterial HT-2012 Mekaniska Egenskaper

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

Betongprovning Hårdnad betong Elasticitetsmodul vid tryckprovning. Concrete testing Hardened concrete Modulus of elasticity in compression

Betongprovning Hårdnad betong Elasticitetsmodul vid tryckprovning. Concrete testing Hardened concrete Modulus of elasticity in compression SVENSK STANDARD Fastställd 2005-02-18 Utgåva 2 Betongprovning Hårdnad betong Elasticitetsmodul vid tryckprovning Concrete testing Hardened concrete Modulus of elasticity in compression ICS 91.100.30 Språk:

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

Material föreläsning 3. HT2 7,5 p halvfart Janne Carlsson

Material föreläsning 3. HT2 7,5 p halvfart Janne Carlsson Material föreläsning 3 HT2 7,5 p halvfart Janne Carlsson Tisdag 22:e November 10:15 15:00 PPU105 Material Förmiddagens agenda Styvhet och vikt: E-modul och densitet ch 4 Paus Styvhetsbegränsad design ch

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

Fordringar i EN och EN för att undvika sprödbrott Bo Lindblad, Inspecta Sweden AB

Fordringar i EN och EN för att undvika sprödbrott Bo Lindblad, Inspecta Sweden AB Fordringar i EN 13445 och EN 13480 för att undvika sprödbrott Bo Lindblad, Inspecta Sweden AB 1 Sprödbrott i tryckkärl 2 Sprödbrott i ventil av gjuten aluminium 3 Typiskt för ett sprödbrott Ingen nämnvärd

Läs mer

KOHESIVA LAGAR I SKJUVNING EN EXPERIMENTELL METOD MED PLASTICERANDE ADHERENDER

KOHESIVA LAGAR I SKJUVNING EN EXPERIMENTELL METOD MED PLASTICERANDE ADHERENDER KOHESIVA LAGAR I SKJUVNING EN EXPERIMENTELL METOD MED PLASTICERANDE ADHERENDER Tomas Walander 1 1 Materialmekanik, Högskolan i Skövde, Box 408, 541 28 Skövde, e-post: tomas.walander@his.se Bild 1 END NOTCH

Läs mer

Material föreläsning 4. HT2 7,5 p halvfart Janne Carlsson

Material föreläsning 4. HT2 7,5 p halvfart Janne Carlsson Material föreläsning 4 HT2 7,5 p halvfart Janne Carlsson Tisdag 29:e November 10:15 15:00 PPU105 Material Förmiddagens agenda Allmän info Bortom elasticitet: plasticitet och seghet ch 6 Paus Hållfasthetsbegränsad

Läs mer

YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp:

YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp: UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren och Staffan Yngve ID-Kod: Program: TENTAMEN 14-01-11 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 14.00-19.00, Polacksbacken,

Läs mer

Laster Lastnedräkning OSKAR LARSSON

Laster Lastnedräkning OSKAR LARSSON Laster Lastnedräkning OSKAR LARSSON 1 Partialkoefficientmetoden Den metod som används oftast för att ta hänsyn till osäkerheter när vi dimensionerar Varje variabel får sin egen (partiell) säkerhetsfaktor

Läs mer

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet

Läs mer

www.eurocodesoftware.se

www.eurocodesoftware.se www.eurocodesoftware.se caeec220 Pelare betong Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev

Läs mer

50 poäng. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

50 poäng. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Metalliska Material Provmoment: Ladokkod: Tentamen ges för: Tentamen A129TG TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 161028 Tid: 09.00-13.00 Hjälpmedel: Miniräknare Formler, figurer, tabeller

Läs mer

LÖSNING

LÖSNING .01 1. En balk ska tillverkas genom att man limmar ihop två lika rektangulära profiler, vardera med måttet. Man kan välja att limma antingen enligt alternativ (a) eller alternativ (b) i nedanstående tvärsnittsfigurer.

Läs mer

Hållfasthetslära Sammanfattning

Hållfasthetslära Sammanfattning 2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning

Läs mer

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,

Läs mer

I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av

I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av Uppgift 2 I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av fackverkstakstol i trä, centrumavstånd mellan takstolarna 1200 mm, lutning 4. träreglar i väggarna, centrumavstånd

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

Livens inverkan på styvheten

Livens inverkan på styvheten Livens inverkan på styvheten Sidan 1 av 9 Golv förstärkta med liv är tänkta att användas så att belastningen ligger i samma riktning som liven. Då ger liven en avsevärd förstyvning jämfört med en sandwich

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

BISTEEX 080213-SL ÖVNINGSEXEMPEL I STÅLBYGGNAD FÖR BYGG- INGENJÖRSUTBILDNINGEN VID CTH

BISTEEX 080213-SL ÖVNINGSEXEMPEL I STÅLBYGGNAD FÖR BYGG- INGENJÖRSUTBILDNINGEN VID CTH BISTEEX 080213-SL ÖVNINGSEXEMPEL I STÅLBYGGNAD FÖR BYGG- INGENJÖRSUTBILDNINGEN VID CTH 1) En 9 m lång lina belastas av vikten 15 ton. Linan har diametern 22 mm och är av stål med spänning-töjningsegenskaper

Läs mer

Belastningsanalys, 5 poäng Fiberarmering - Laminat

Belastningsanalys, 5 poäng Fiberarmering - Laminat Fiberarmering, laminat, kompositmaterial Läsa mer: - Bra länk Lars Viebkes dokument om Fiberkompositlaminering http://web.telia.com/~u84408370/komposit/index.html - Styvhet och styrka, Grundläggande kompositmekanik,

Läs mer

Härdningsmekanismer OBS: Läs igenom handledningen för laborationen.

Härdningsmekanismer OBS: Läs igenom handledningen för laborationen. Härdningsmekanismer OBS: Läs igenom handledningen för laborationen. Postadress Box 118 Besöksadress Ole Römers väg 1 växel 046-222 00 00 Telefax 046-222 46 20 Internet http://www.materal.lth.se ALLMÄNT

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 27 Pelaren i figuren nedan i brottgränstillståndet belastas med en centriskt placerad normalkraft 850. Kontrollera om pelarens bärförmåga är tillräcklig. Betong C30/37, b 350, 350, c 50,

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

Textil mekanik och hållfasthetslära. 7,5 högskolepoäng. Ladokkod: 51MH01. TentamensKod: Tentamensdatum: 12 april 2012 Tid:

Textil mekanik och hållfasthetslära. 7,5 högskolepoäng. Ladokkod: 51MH01. TentamensKod: Tentamensdatum: 12 april 2012 Tid: Textil mekanik och hållfasthetslära 7,5 högskolepoäng Provmoment: Ladokkod: 51MH01 Tentamen ges för: Tentamen Textilingenjörsprogrammet TI2 TentamensKod: Tentamensdatum: 12 april 2012 Tid: 14.00-18.00

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Dimensionering för moment och normalkraft stål/trä KAPITEL 9 DEL 2

Dimensionering för moment och normalkraft stål/trä KAPITEL 9 DEL 2 Dimensionering för moment och normalkraft stål/trä KAPITEL 9 DEL 2 oment och normalkraft Laster Q (k) Snittkrafter och moment L q (k/m) max = ql 2 /8 max =Q Snittkrafterna jämförs med bärförmågan, t.ex.

Läs mer

Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal

Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal Textil mekanik och hållfasthetslära Provmoment: tentamen Ladokkod: 51MH01 Tentamen ges för: Textilingenjörsprogrammet TI2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014 Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Tentamen i Hållfasthetslära för K4 MHA 150

Tentamen i Hållfasthetslära för K4 MHA 150 Tentamen i Hållfasthetslära för K4 MHA 150 28 augusti 2004, 8 45 12 45 (4 timmar) Lärare: Anders Ekberg, tel: 772 480 Maximal poäng är 18. För godkänt krävs 9 poäng Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära

Läs mer

Material. VT1 1,5 p Janne Färm

Material. VT1 1,5 p Janne Färm Material VT1 1,5 p Janne Färm Torsdag 5:e Februari 10:15 12:00 Föreläsning M3 KPP045 Material-delen Förmiddagens agenda Brottmekanik och utmattning : Kapitel 7 Laboration: Härdning och hårdhetsmätning

Läs mer

Material föreläsning 4. HT2 7,5 p halvfart Janne Färm

Material föreläsning 4. HT2 7,5 p halvfart Janne Färm Material föreläsning 4 HT2 7,5 p halvfart Janne Färm Tisdag 1:a December 10:15 15:00 PPU105 Material Förmiddagens agenda Allmän info Bortom elasticitet: plasticitet och seghet ch 6 Paus Hållfasthetsbegränsad

Läs mer

TENTAMEN I KURSEN BYGGNADSMEKANIK 2

TENTAMEN I KURSEN BYGGNADSMEKANIK 2 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström

Läs mer

Samverkanspålar Stål-Betong

Samverkanspålar Stål-Betong Samverkanspålar Stål-Betong Pålkommissionens anvisningar för användandet av Eurocode 1994 med i rör innesluten betong som kompositpåle Pålkommissionen Rapport 108 Håkan Karlsson Skanska Teknik Anläggning

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på

Läs mer

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna

Läs mer

------------ -------------------------------

------------ ------------------------------- TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft

Läs mer

LÖSNING

LÖSNING .01 (Del I, teori; 1 p.) 1. En fast inspänd balk med kontinuerlig massfördelning enligt figuren utför fria svängningar. Visa med enkla skisser hur 1a och 2a egensvängningsmoderna frihetsgraderna ser ut..02

Läs mer

3: 24p 4: 36p 5: 48p. 18 uppgifter, 60 p

3: 24p 4: 36p 5: 48p. 18 uppgifter, 60 p Luleå tekniska universitet TENTAMEN Kurskod: K000b Kursnamn: Byggmaterial Tentamensdatum: 01-1-19 Skrivtid: 09.00-15.00 Tillåtna hjälpmedel: Räknedosa Jourhavande lärare m fullständigt telefonnr: Ulf Ohlsson

Läs mer

MATERIALLÄRA (VBM611)

MATERIALLÄRA (VBM611) LTH Ingenjörshögskolan vid Campus Helsingborg Sanne Johansson MATERIALLÄRA (VBM611) Laborationer ht 1 2013 Postadress Box 882, SE-251 08 Helsingborg Besöksadress Universitetsplatsen 2 Telefon dir 046-222

Läs mer

Exempel 11: Sammansatt ram

Exempel 11: Sammansatt ram Exempel 11: Sammansatt ram 11.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera den sammansatta ramen enligt nedan. Sammansatt ram Tvärsnitt 8 7 6 5 4 3 2 1 Takåsar Primärbalkar 18 1,80 1,80

Läs mer

Moment och normalkraft

Moment och normalkraft Moment och normalkraft Betong Konstruktionsteknik LTH 1 Pelare Främsta uppgift är att bära normalkraft. Konstruktionsteknik LTH 2 Pelare Typer Korta stubbiga pelare: Bärförmågan beror av hållfasthet och

Läs mer

Angående skjuvbuckling

Angående skjuvbuckling Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan

Läs mer

H Å L L FA S T H E T S L Ä R A

H Å L L FA S T H E T S L Ä R A L I N D S T R Ö M ( R E D. ) U P P L A G A 1 - β P R O B L E M S A M L I N G H Å L L FA S T H E T S L Ä R A Denna problemsamling är riktad till ingenjörsstudenter på teknisk högskola, och omfattar problem

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer