Formelblad, lastfall och tvärsnittsdata
|
|
- Katarina Lindberg
- för 5 år sedan
- Visningar:
Transkript
1 Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata
2 Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning: ε = σ E νσ y E νσ z E ε y = νσ E + σ y E νσ z E ε z = νσ E νσ y E + σ z E Skjuvspänning: τ = Gγ G = E 1+ν Temperaturtöjning ε = αt T 0 iell belastning av stång σ = N ε = δ δ = N E δ = 0 N E d öjning av balk id balkens ändar: id en fast inspänning är momentet i allmänhet skilt från noll. id ett filager eller rullager i balkens ände är momentet noll såvida inte ett punktmoment angriper vid stödet. alkdel utan last: Tvärkraften är konstant. omentet varierar linjärt. alkdel med jämnt utbredd last: Tvärkraften varierar linjärt. omentet varierar kvadratiskt.
3 id punktlast: Diskontinuitet i tvärkraftsdiagrammet. Knyck i momentdiagrammet. id punktmoment: Tvärkraften opåverkad. Diskontinuitet i momentdiagrammet. llmänt: Där tvärkraften är noll har momentet ett etremvärde. omentdiagrammet ligger på den dragna sidan, d.v.s. den konvea sidan av balken om man skissar balkens utböjda form. Normalspänning: σ = z I z y σ,ma = z W z σ = y I y z W z = I z y ma σ = N z I z y + y I y z σ = N zi y + y I yz I y I z I yz y + yi z + z I yz I y I z I yz z Skjuvspänning: τ y = yȳ I z b v y = yȳ I z ȳ = yd Yttröghetsmoment: I z = y d I y = z d I yz = yz d Rektangulärt tvärsnitt: I z = bh3 1 Cirkulärt tvärsnitt: I z = πr4 4 arallellförflyttningssatsen: I z = I z + b
4 Samband mellan last - tvärkraft - böjmoment - vinkeländring - utböjning: utböjning v vinkeländring θ = böjmoment tvärkraft last = EI dθ d = dv d EId v d = d d = d d EId v d = EId3 v d 3 = d d = d d EId v d = EId4 v d 4 om EI konstant om EI konstant öjning av balk - elastiskt-idealplastiskt material e = σ s W p = σ s Z η = Z W Rektangulärt tvärsnitt: Z = bh 4 Sammansatt tvärsnitt: Z = Σ i ȳ i ridning av cirkulär cylinder ϕ = T I p G τ = Tr I p olärt tröghetsmoment: I p = r d Solid cylinder: I p = πr4 Tunnväggig cylinder: I p πr 3 b Ihålig cylinder: I p = πr4 y R 4 i
5 Knäckningslast c = π EI β 1 b = b = 1 3 b = b = b = 1 pproimativ förstoringsfaktor för tryckt pelare v II = 1 1 / c v I
6 astfall Enfacksbalkar med konstant böjstyvhet. Randvillkor: Fall 1-7 Fall 8-11 Fall 1-16 Fall eteckningar: = längd E = elasticitetsmodul I = yttröghetsmoment R = upplagskraft = tvärkraft = böjmoment θ = vinkeländring v = utböjning 0 1 / R = 0 1 = 0 1 = θ = 16EI v 0 1 = 16EI R v R = 1 = 1 = θ = 16EI 43 3 R ma = 4 v ma = 3 48EI R = b 0 1 = b 0 1 = b θ = b 1 b 6EI v 0 1 = b 1 b 3 6EI v 1 = a a + + a 6EI R = a 1 = a 1 = a θ = a 1 a 6EI v 1 = a b 3EI 3 + 3
7 3 0 1 R = = = R = + ma = 8 θ = 3 4EI v = 3 3 4EI θ = 3 4EI v ma = v0.5 = EI 4 a 1 c b c 3 a b 4 R = cb 1 3 = cb a 1 a 1 3 = 1 a 1 + cb θ = cb 1 b 6EI c 4 θ = ca 1 a 6EI c 4 + R = ca ma = cb a 1+cb 5 R = 6 = 3 = 3 6 θ = EI v = EI 4 v ma = v0.519 = EI R = 3 ma = = θ = EI
8 6 R = + = + R = + 1 = + + θ = 6EI θ = 6EI v = ] [ EI a b R = 0 = = 0 θ = 0 3 b 6EI 1 v 0 1 = 0 1 3b 6EI v 1 = 0 1 3a 6EI R = 0 1 = 0 θ = 0 3 a 6EI 1 8 R = = 1 = 1 θ = 0 v = v EI θ = EI v = 3 3EI
9 9 R = = 1 1 = 1 θ = 0 v = v EI 3 θ = 3 6EI v = 4 8EI 10 R = 1 = 1 = θ = 0 v = v EI 4 θ = 3 4EI v = 4 30EI 11 R = 0 0 = 0 = 0 θ = 0 θ = 0 EI v = 0 EI v = 0 EI
10 1 / R = R = = 1 = = 8 v 0 1 = 16EI = 8 v ma = 3 19EI = a b R = b 0 1 = b 1+ a 1+ a R = a 1 = a = ab 1 = a b 3 [ v 0 1 = a 6EI v 1 = a3 b 3 3EI a +3a 1+ b 1+ b = ba 1 3 a +a3 3 ] 3 a R = = = 6 + = = 1 v = 3 4EI + 4 R = mitt = 4 v ma = 4 384EI
11 15 R = 3 0 = = = 30 ma = = 46.6 R = 7 0 = a b R = 3 0 a + b = 3 0 a + b 1 0 R = 3 0 a + b = R + 1 = R + 0 a = 0 + b 1 a = 0 + b 1 17 / R = = = 5 3 v 0 1 = 3EI v 1 = EI 53 3 R = = = 3 16 v 1 = 3EI v ma = v0.447 = 3 107EI
12 18 a 0 1 b R = b 3 b 0 1 = b 3 b = a v 0 1 = b 1EI v 1 = a 1EI v 1 = a b 3 1EI 1 a [3 a + a [ R = a 3 a 1 = a 3 a 1 = b a + a ] 3 a +3+ 3a b ] 3 a R = = 8 = = 8 v = 3 48EI R = 5 8 ma,fält = = 9 18 v mitt = 4 19EI v ma = v0.4 = 4 185EI 0 R = 10 = 1 5 = = 15 R = 5 ma,fält = = 0.098
13 1 0 0 a b R = 0 3a 3 = 0 3a = 0 3 3a 0 = 0 1 3a R = 0 3a 3 1 = 0 3 3a 0
14 Tvärsnittsdata HE-profil eteckningar: y t z r d b y z h = Tvärsnittsarea w = ivarea F = antelarea per längdenhet g = assa per längdenhet Tvärsnittsmått reor och massa rofil h b t d r w F g mm mm mm mm mm mm mm m /m kg/m HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE
15 I z, I y = Yttröghetsmoment W z, W y = Elastiskt böjmotstånd Z z, Z y = lastiskt böjmotstånd i z, i y = Tröghetsradie öjning kring z-aeln öjning kring y-aeln rofil I z W z Z z i z I y W y Z y i y mm 4 mm 3 mm 3 mm mm 4 mm 3 mm 3 mm HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE
16 Tvärsnittsdata HE-profil eteckningar: y t z r d z h = Tvärsnittsarea w = ivarea F = antelarea per längdenhet g = assa per längdenhet b y Tvärsnittsmått reor och massa rofil h b t d r w F g mm mm mm mm mm mm mm m /m kg/m HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE
17 I z, I y = Yttröghetsmoment W z, W y = Elastiskt böjmotstånd Z z, Z y = lastiskt böjmotstånd i z, i y = Tröghetsradie öjning kring z-aeln öjning kring y-aeln rofil I z W z Z z i z I y W y Z y i y mm 4 mm 3 mm 3 mm mm 4 mm 3 mm 3 mm HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE HE
Spänning och töjning (kap 4) Stång
Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)
8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:
Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
TENTAMEN I KURSEN BYGGNADSMEKANIK 2
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström
B3) x y. q 1. q 2 x=3.0 m. x=1.0 m
B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,
K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.
K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams
Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
INNEHÅLL LAST- KONSTAN- TER U-STÅNG U-BALK UPE- BALK IPE- BALK HEA- BALK HEB- BALK HEM- BALK VKR- RÖR KKR- RÖR KONSTR- RÖR VINKEL- STÅNG T-STÅNG
INNEHÅLL LAST- KONSTAN- TER U-STÅNG U-BALK UPE- BALK IPE- BALK HEA- BALK HEB- BALK sid Lastkonstanter 4 U-stång, U-balk 6 UPE-balk 8 IPE-balk 10 HEA-balk 12 HEB-balk 14 HEM-balk 16 VKR-rör 18 KKR-rör 22
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Material, form och kraft, F5
Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan
Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag
Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017
Mekanik och maritima vetenskaper, Chalmers tekniska högskola ENAMEN I HÅFASHESÄRA KF OCH F MHA 8 6 OKOBER 7 i och plats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt.3 Hjälpmeel: ösningar. ärobok i
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
Tentamen i Balkteori, VSMF15, , kl
Tentamen i Balkteori, VSMF15, 2011-10-18, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs maimalt 18 poäng. Tentamen består av två delar: En del med frågor och en del
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-08-8 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-0-3 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar
Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
konstruktionstabeller rör balk stång
konstruktionstabeller rör balk stång Att dimensionera rätt har ingenting med tur att göra Tibnors konstruktionstabeller innehåller komplett produktredovisning och dimensioneringsanvisningar för hålprofiler,
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ENAMEN I HÅFASHESÄA F MHA 8 5 AI 5 ösningar id och plats: 8.3.3 i V huset. ärare besöker salen 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.
Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,
Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för
Tentamen i Hållfasthetslära för K4 MHA 150
Tentamen i Hållfasthetslära för K4 HA 150 aximal poäng är 18. För godkänt krävs 9 poäng 17 april 004, 8.45 1.45 4 timmar) Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära och mekanik.. Handböcker, formelsamlingar,
H Å L L FA S T H E T S L Ä R A
L I N D S T R Ö M ( R E D. ) U P P L A G A 1 - β P R O B L E M S A M L I N G H Å L L FA S T H E T S L Ä R A Denna problemsamling är riktad till ingenjörsstudenter på teknisk högskola, och omfattar problem
Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal
Textil mekanik och hållfasthetslära Provmoment: tentamen Ladokkod: 51MH01 Tentamen ges för: Textilingenjörsprogrammet TI2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)
DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband
TENTAMEN I HÅLLFASTHETSLÄRA FÖR I1 MME januari (5 timmar) Lärare: Lars Sonnerup, tel:
2002-01-18:anek ENAMEN I HÅFASHESÄRA FÖR I1 MME170 18 januari 2002 08.5 1.5 (5 timmar) ärare: ars Sonnerup, tel: 070 850689 Maimal poäng är 18. För gokänt krävs 9 poäng. Betyg ges sammanvägt me el A i
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
Angående skjuvbuckling
Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan
Textil mekanik och hållfasthetslära
Textil mekanik och hållfasthetslära 7,5 högskolepoäng romoment: tentamen Ladokkod: ATMH och 5MH Tentamen ges för: Textilingenjörer årskurs Tentamensdatum: 7--3 Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentamen
Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik
Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet
Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson
Hållfasthetslära HT1 7,5 hp halvfart Janne Carlsson tisdag 11 september 8:15 10:00 Föreläsning 3 PPU203 Hållfasthetslära Förmiddagens agenda Fortsättning av föreläsning 2 Paus Föreläsning 3: Kapitel 4,
Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)
Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan
------------ -------------------------------
TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft
Tentamen i Balkteori, VSMN35, , kl
Tentamen i Balkteori, VSMN35, 2012-10-26, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs 16 poäng. Tentamen består av två delar: En del med frågor och en del med räkneuppgifter.
Betongkonstruktion BYGC11 (7,5hp)
Karlstads universitet 1(12) Betongkonstruktion BYGC11 (7,5hp) Tentamen Tid Torsdag 17/1 2013 kl 14.00 19.00 Plats Universitetets skrivsal Ansvarig Asaad Almssad tel 0736 19 2019 Carina Rehnström tel 070
FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 20 februari 2007 FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Projektuppgift Syfte: att träna på att skriva ett lite större Matlabprogram med relevans för byggnadsmekanik.
Miniräknare, passare, gradskiva och linjal. 50 poäng
Textil mek. & hållfasthetslära romoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 6--5 Tid: 9:-3: Hjälpmedel: Miniräknare,
1. Ett material har dragprovkurva enligt figuren.
1. Ett material har dragprovkurva enligt figuren. a) Vad kallas ett sådant materialuppträdande? b) Rita i figuren in vad som händer vid avlastning till spänning = 0 från det markerade tillståndet ( 1,
Manual för ett litet FEM-program i Matlab
KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet
Rostfria konstruktionsrör
Rostfria konstruktionsrör INNEHÅLL Inledning........................... 3 Materialdata........................ 4 Toleranser.......................... 5 Tvärsnittsdata........................ 6 Dimensionering
Konstruktionsuppgift i byggnadsmekanik II. Flervåningsbyggnad i stål. Anders Andersson Malin Bengtsson
Konstruktionsuppgift i byggnadsmekanik II Flervåningsbyggnad i stål Anders Andersson Malin Bengtsson SAMMANFATTNING Syftet med projektet har varit att dimensionera en flervåningsbyggnad i stål utifrån
Tentamen i Hållfasthetslära för I2
Department of pplied Mecanics FORMLI Tentamen i Hållfastetslära för I2 18 december 2001 14.15 19.15 (skrivningstid 5 timmar) Hjälpmedel 1. Läroböcker i ållfastetslära oc mekanik. 2. Handböcker, formelsamlingar
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.
Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?
Kursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
5 Fleraxliga spänningstillstånd Plant (tvåaxligt) spänningstillstånd: Mohr s Cirkel Treaxliga spänningstillstånd...
VT15 Innehållsförteckning 1 Allmänt... 1 1.1 Enheter och storheter... 1 1.2 Matematik och geometri... 4 1.2.1 Räkneregler... 4 1.2.2 Derivator och Integraler... 5 1.2.3 Trigonometri... 6 1.2.4 Area- och
K-uppgifter Strukturmekanik/Materialmekanik
K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.
Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg
Pelare ÖVNING 27 Pelaren i figuren nedan i brottgränstillståndet belastas med en centriskt placerad normalkraft 850. Kontrollera om pelarens bärförmåga är tillräcklig. Betong C30/37, b 350, 350, c 50,
Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk
.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N
Miniräknare, passare och linjal. 50 poäng
Textil mek. & hållfasthetslära Promoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH0 Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 05-0-6 Tid: 09:00-3:00 Hjälpmedel:
Lunds Tekniska Högskola, LTH
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation
Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg
Pelare ÖVNING 7 LÖSNING Dimensionerande materialegenskaper Betong C30/37 f cc f cc 30 0 MMM γ c 1,5 E cc E cc 33 γ cc 1, 7,5GGG Armering f yy f k 500 435 MMM γ s 1,15 ε yy f yy 435. 106,17. 10 3 E s 00.
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
2 november 2016 Byggnadsmekanik 2 2
Byggnadsmekanik 2 Välkommen! 2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Kursen är en fortsättning i byggnadsmekanik och hållfasthetslära med inriktning mot byggnadskonstruktion. I kursen behandlas
Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson
Hållfasthetslära VT2 7,5 p halvfart Janne Carlsson Torsdag 30:e Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Fortsättning från föreläsning 1 Rast Föreläsning
Kursprogram Strukturmekanik FME602
Kursprogram Strukturmekanik FME602 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper
GRÄNSLASTBERÄKNINGAR Inkrementell formulering och gränslastteori KARIN FORSMAN. Bachelor s Dissertation at Structural Mechanics
GRÄNSLASTBERÄKNINGAR Inkrementell formulering och gränslastteori KARIN FORSMAN Bachelor s Dissertation at Structural Mechanics DEPARTMENT OF CONSTRUCTION SCIENCES DIVISION OF STRUCTURAL MECHANICS ISRN
Kursprogram Strukturmekanik VSMA20
Kursprogram Strukturmekanik VSMA20 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper
Hållfasthetslära Sammanfattning
2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning
Kursprogram Strukturmekanik VSMA20
Kursprogram Strukturmekanik VSMA20 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till strukturmekanik tillämpad på konstruktionstyper
Material föreläsning 3. HT2 7,5 p halvfart Janne Carlsson
Material föreläsning 3 HT2 7,5 p halvfart Janne Carlsson Tisdag 22:e November 10:15 15:00 PPU105 Material Förmiddagens agenda Styvhet och vikt: E-modul och densitet ch 4 Paus Styvhetsbegränsad design ch
Rättelseblad 1 till Boverkets handbok om betongkonstruktioner, BBK 04
Rättelseblad till Boverkets handbok om betongkonstruktioner, BBK 04 I den text som återger BBK 04 har det smugit sig in tryckfel samt några oklara formuleringar. Dessa innebär att handboken inte återger
Laborationsuppgift om Hertzsprung-Russell-diagrammet
Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
Tillämpade analysuppgifter för V och W
Tillämpade analysuppgifter för V och W 1. (V,W) Med vattenföring menas den volym vatten som rinner fram per tidsenhet i ett vattendrag och uttrycks vanligen i m 3 /s. En graf som visar hur vattenföringen
Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration
Sensorer, effektorer och fysik Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Töjning Betrakta en stav med längden L som under inverkan av en kraft F töjs ut en
TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12
Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två
Transversalbelastat murverk
Transversalbelastat murverk Generellt Beskrivs i SS-EN 1996-1-1, avsnitt 5.5.5 och 6.3 I handboken Utformning av murverkskonstruktioner enligt Eurokod 6, beskrivs i avsnitt 4.3 Vid låga vertikallaster
Textil mekanik och hållfasthetslära. 7,5 högskolepoäng. Ladokkod: 51MH01. TentamensKod: Tentamensdatum: 12 april 2012 Tid:
Textil mekanik och hållfasthetslära 7,5 högskolepoäng Provmoment: Ladokkod: 51MH01 Tentamen ges för: Tentamen Textilingenjörsprogrammet TI2 TentamensKod: Tentamensdatum: 12 april 2012 Tid: 14.00-18.00
Tentamen i Mekanik Statik TMME63
Tentamen i Mekanik Statik TMME63 2013-01-08, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: Eaminator: Peter Schmidt Tentajour: Carl-Gustaf ronsson, Tel. 28 17 83, (Besöker salarna första gången ca 10.00