Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt
|
|
- Malin Ingegerd Ström
- för 8 år sedan
- Visningar:
Transkript
1 Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt
2 På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer Dimensionsanalys Bestämning av konstanter
3 Fysikaliska modeller En fysikalisk modell är en beskrivning av verkligheten som kan användas för att göra förutsägelser. En fysikalisk modell är ofta i form av matematiska formler som kan användas för att göra beräkningar. Det finns ofta olika modeller för samma fysikaliska verklighet.
4 Experiment och teori De fysikaliska modellerna vi har funnit har hittats genom experiment. Härledningar kan göras för att ta fram samband utifrån lagar som anses vara verifierade. Våra modeller används för att göra förutsägelser, men säger egentligen inget annat om verkligheten.
5 Olika modeller Observera att det ofta finns olika modeller av samma fenomen! Exempel, bollkast En boll kastas och landar sträckan L från kastarens fötter. Kvalitativ modell: L beror av utgångshastigheten och utgångsvinkeln. Mycket enkel matematisk modell: L 0 Utan luftmotstånd: L = v 0 sin2a g Med luftmotstånd: datorberäkning
6 Förenklingar Mycket ofta behöver förenklingar och restriktioner göras för under vilka förutsättningar en modell gäller med god precision. L = v 0 sin2a g Denna modell har bland annat ej tagit hänsyn till: bollens höjd när den släpps, luftmotstånd, eventuell bollskruv etc. Vi kanske skulle vilja generalisera situationen för att täcka in mycket höga hastigheter så gravitation varierar, vilket skulle kräva en annan modell för att göra bra förutsägelser.
7 Modellbygge För att skapa en matematisk modell behöver vi definiera de variabler som ingår. Vi behöver även fundera på avgränsningar och idealiseringar. Om vi skall bygga en modell genom experiment är det lämpligt att studera en variabel åt gången och hålla allt annat konstant. Vi skapar en hypotes och prövar den.
8 Arbetsexempel Vi skall skapa en modell över hur hastigheten varierar hos en kropp vid fritt fall med hjälp av mätningar. h (m) v (m/s)
9 Variabler Tänkbara variabler: v (m/s) sluthastigheten h (m) fallhöjd (uppenbart) M(kg) massa Luftmotstånd? Övrigt?
10 Mätningar Vi gör mätningar där endast en variabel varierar Hastightens beroende av fallhöjden Hastighetens beroende av massan 4,50 6 v (m/s) 4,00 3,50 v (m/s) 5 3,00 4 2,50 2,00 3 1,50 2 1,00 0,50 1 0,00 0 0,2 0,4 0,6 0,8 1 h (m) 0 0 0,2 0,4 0,6 0,8 1 1,2 h (m) Massan tycks inte påverka hastigheten så mycket!
11 En enkel kvalitativ modell Hastigheten ökar med fallhöjden.
12 En första matematisk modell Vi kan bygga en enkel matematisk modell med en linjär funktion. v (m/s) 5,00 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 Modell med linjär funktion 0 0,2 0,4 0,6 0,8 1 h (m) Modell: v = C h, C konstant Rimligt att kräva att v = 0 då h = 0
13 Modell med potensfunktion v (m/s) 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 Hastightens beroende av fallhöjden 0 0,2 0,4 0,6 0,8 1 h (m) Potensfunktioner är vanliga i fysikaliska sammanhang. Hypotes: V = C h k, C konstant Hur kan vi bestämma k?
14 Linjärisering med logaritmer Vi skall kombinera: Räta linjens ekvation: y = kx + m Logaritmlagarna: lg (ab) = lg (a) + lg (b) lg (a k ) = k lg (a)
15 Linjärisering med logaritmer Hypotes: V = C h k Logaritmera båda leden: lg (v) = lg (C h k ) lg (v) = lg (C) + lg (h k ) lg (v) = lg (C) + k lg (h) lg (v) = k lg (h) + lg (C)
16 Linjärisering med logaritmer Hypotes: V = C h k lg (v) = k lg (h) + lg (C) samma form som en rät linje! y = k x + m Rita en graf med: lg (v) på y-axeln lg (h) på x-axeln Då är lutningen k den sökta exponenten!
17 Linjärisering med logaritmer lg (v) 0,7 logaritmerade mätvärden 0,6 0,5 0,4 Δy = 0,45 0,3 0,2 0,1-1 -0,8-0,6-0,4-0,2 0 lg (h) Δx = 0,95 k = Dy Dx = 0, 45 0,95» 0, 47» 1 2
18 Linjärisering med logaritmer Hypotes: V = C h k k = 1/2 ger modellen: v= Ch 1/2 = C h C är en konstant som ännu inte är bestämd.
19 Generalisering Kan vi generalisera vår modell? Fallhastigheten skulle säkert vara annorlunda om vi hade en annan tyngdacceleration (exempelvis på månen)! Kan vi få in även detta i vår modell? Men vi kan ju inte göra ett experiment här på jorden där vi varierar g. Hur gå vidare?
20 Dimensionsanalys Vi mäter i SI- systemets enheter. Det använder sju fysikaliska grundenheter. Storhet Beteckning Enhet Längd l m Massa m kg Tid t s Elektrisk ström I A Temperatur T K Ljusstyrka L cd Substansmängd n mol
21 SI-grundenheter Storhet (enhet) Definition Längd (m) Massa (kg) Sträckan som ljuset färdas under 1/ s i vacuum. Massan av massprototypen som finns i ett valv utanför Paris. Tid (s) perioder av strålning från en viss övergång hos Cs 133 Elektrisk ström (A) Temperatur (K) Ljusstyrka (cd) Materiemängd (mol) Strömmen som genererar en kraft på 2*10-7 newton för varje meter ledare strömmen flyter igenom. Ledarna är parallella, raka och placerade en m från varandra i vacuum. 1/273,16 av den termodynamiska temperaturen vid vattnets trippelpunkt. Ljusstyrkan i en given riktning från en källa som sänder ut monokromatisk strålning på 540*10 12 Hz och som har en strålningsstyrka på 1/683 W per steradian i denna riktning. Materiamängden i ett system med samma antal systemelement som antalet atomer i 0,012 kilogram C 12.
22 Härledda storheter Från de grundläggande sju storheterna definieras övriga enheter utifrån fysikaliska eller matematiska samband. Vissa har fått egna namn, men alla kan uttryckas i de sju grundenheterna i SI-systemet. Exempel på härledda enheter Storhet Beteckning Enhet Hastighet v m s -1 Acceleration a m s -2 Kraft F N (kg m s -2 ) Tryck P Pa (kg m -1 s -2 ) Frekvens f Hz (s -1 ) Energi E J (m 2 kg s -2 )
23 Dimensionsanalys I ett fysikaliskt samband måste alltid enheterna vara samma i alla led om vi uttrycker enheterna i de sju grundenheterna. Exempel: s = vt s (m) v (m s -1 ) t (s) Enhet i vänster led: m Enhet i höger led: m s -1 s = m VL = HL Detta kan utnyttjas för att hitta de samband som är fysikaliskt möjliga!
24 Dimensionsanalys Vi antar att g ingår som en potensfunktion i sambandet: v = C h 1/2 g a vi söker a.
25 Dimensionsanalys v = C h 1/2 g a Om C är enhetslös gäller för enheterna: v h 1/2 g a Variabel Enhet v m s -1 h m g m s -2 m s -1 = (m) 1/2 (m s -2 ) a m s -1 = m 1/2 m a s -2a m s -1 = m 1/2+a s -2a Stämmer om a = 1/2 Generaliserad modell: v = C hg v = C h 1/2 g 1/2
26 Konstanten C För att kunna göra beräkningar med modellen behövs ett numeriskt värde på konstanten C. v = C hg C = v hg v h g C 1,41 0,1 9,82 1,42 2,07 0,2 9,82 1,48 2,33 0,3 9,82 1,36 2,86 0,4 9,82 1,44 3,14 0,5 9,82 1,42 3,35 0,6 9,82 1,38 3,52 0,7 9,82 1,34 3,84 0,8 9,82 1,37 3,94 0,9 9,82 1,33 Medelvärde 1,42 1,48 1,36 1,44 1,42 1,38 1,34 1,37 1,33 C 9 1,4
27 Prövning av modell Modell v 1, 4 hg v (m/s) 4,50 Jämförelse av modell och mätningar 4,00 3,50 3,00 2,50 Mätdata Modell 2,00 1,50 1,00 0 0,2 0,4 0,6 0,8 1 h (m)
28 Prövning av modell v (m/s) 4,50 4,00 Oberoende mätningar 3,50 3,00 2,50 Mätserie 2 Modell 2,00 1,50 1,00 0 0,2 0,4 0,6 0,8 1 h (m) Modellen skall kunna verifieras av nya oberoende mätningar!
29 I laboratoriet Nu är det er tur att bygga en modell i laboratoriet. Ha kul och fråga när ni behöver hjälp. Lycka till!
Labbrapport svängande skivor
Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
Övningar till datorintroduktion
Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)
Övningsuppgifter till Originintroduktion
UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft
Fysikaliska Modeller
TFYA15 Fysikaliska Modeller Kursansvarig: Magnus Johansson TFYA15 Fysikaliska modeller VT2019 Problemlösning & Modelltänkande Fredrik Karlsson Kommer att behandla VT1: Fysikalisk problemlösning VT2: Klassisk
TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.
TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna
Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai
Projekt: Filmat tornfall med modell av tornet Benjamin Tayehanpour, Adrian Kuryatko Mihai Abstrakt Detta dokument avhandlar vad som händer när ett torn faller. Såväl elastiska som stela kroppar behandlas.
Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.
Tid Vi har inte en entydig definition av tid. Tid knytas ofta till förändringar och rörelse. Vi koncentrerar på hur vi mäter tiden. Vi brukar använda enheten sekund för att mäta tiden. Enheten för tid
Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.
Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.
Matematik 3c Kap 2 Förändringshastighet och derivator
Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00
Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta
Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β
HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents
Tillämpad vågrörelselära FAF260, 6 hp
Tillämpad vågrörelselära FAF260, 6 hp Inför laborationerna Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till
En pendels svängningstid
Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket
Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
SVÄNGNINGSTIDEN FÖR EN PENDEL
Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt
Experimentell metodik
Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =
Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu
Kulstötning Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu Abstract I detta projekt undersöktes en kulstötning med starthöjden meter och en längd på,5 meter med hjälp av matematiska modeller.
Laboration 1 Nedslagskratrar
Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.
9-2 Grafer och kurvor Namn:.
9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
Experimentella metoder 2013, Räkneövning 3
Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.
Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter;
Konsoliderad version av Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter; Ändring införd: t.o.m. STAFS 2015:5 1 Dessa föreskrifter ska tillämpas på mätdon som används vid mätning
Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik
Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Chalmers. Matematik- och fysikprovet 2009 Fysikdelen
Chalmers Teknisk fysik Teknisk matematik Arkitektur och teknik Matematik- och fysikprovet 2009 Fysikdelen Provtid: 2h. Hjälpmedel: inga. På sista sidan finns en lista över fysikaliska konstanter som eventuellt
Laborationsintroduktion. FAFA05 och FAFA65
Laborationsintroduktion FAFA05 och FAFA65 höstterminen 2019 Kurslaboratoriet, fysik LTH Laborationsregler Förberedelser Läs i god tid före laborationstillfället igenom laborationsinstruktionen och de teoriavsnitt
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Ingenjörsmetodik IT & ME 2010 Föreläsning 2. Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6
Ingenjörsmetodik IT & ME 2010 Föreläsning 2 Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6 1 Frågor från förra gången? 2 Likabehandling Funktionsnedsättning Har du en funktionsnedsättning och behöver
STOCKHOLMS UNIVERSITET FYSIKUM
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och
Linnéuniversitetet Institutionen för fysik och elektroteknik
Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna
1 Den Speciella Relativitetsteorin
1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från
Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys
Lektion 5 Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys 005-10-04 Fysikexperiment, 5p 1 Pullfördelningen Mätningen av tyngdaccelerationen:
1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.
Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..
Prov Fysik 2 Mekanik
Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då
Naturvetenskapliga kunskapsintressen
Naturvetenskap Gymnasieskola Modul: Naturvetenskapens karaktär och arbetssätt Del 4: Att beskriva och benämna Naturvetenskapliga kunskapsintressen Marcus Angelin, Vetenskapens Hus, Jakob Gyllenpalm och
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Fysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.
Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur
3-8 Proportionalitet Namn:
3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt
Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.
Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan
27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2
Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen
FRÅN MASSA TILL TYNGD
FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok
Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)
Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar
Lösa ekvationer på olika sätt
Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.
= + = ,82 = 3,05 s
Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
9 Storheter och enheter
9 Storheter och enheter 9.1 SI - DET INTERNATIONELLA ENHETSSYSTEMET SI (Systeme Internationale d'unites), det internationella måttenhetssystemet, är inte ett helt nytt måttsystem. Det bygger på tidigare
Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik
Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller
Kapitel 3. Standardatmosfären
Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net
Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar
Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Mats Braskén (Åbo Akademi) och Ray Pörn (Yrkeshögskolan Novia) Accelerationssensorn Accelerationssensorn mäter accelerationen
Handledning laboration 1
: Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen
Sammanfattning Fysik A - Basåret
Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Laboration 1 Fysik
Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på
Gunga med Galileo matematik för hela kroppen
Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp
Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.
Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan
Övningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
M0038M Differentialkalkyl, Lekt 4, H15
M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.
Ingenjörsmetodik IT & ME 2011 Föreläsning 11
Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar
TFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
4 rörelsemängd. en modell för gaser. Innehåll
4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen
TMFT13 Fö: Temperaturmätning
TMFT13 Fö: Temperaturmätning Per Sandström Institutionen för Fysik, Kemi och Biologi Grundenheterna i Si-systemet Massa 1 kg Massan av en platina vikt som förvaras i Frankrike. Längd 1 m Det avstånd som
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Mer om generaliserad integral
Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av
6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist
Undersökning av hur kastlängden varierar i kulstötning Längden på en kulstöt beror på olika variabler. Höjden, hastigheten, kastvinkeln samt tyngdsaccelerationen spelar roll. Dessa varibler ska varieras
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 111 Sal KÅRA, T1 Tid 14-18 Kurskod Provkod Kursnamn/benämning BFL11 TEN1 Fysik A för tekniskt/naturvetenskapligt
Laboration 2 Mekanik baskurs
Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften
(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.
RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Kapitel 1. Kemiska grundvalar
Kapitel 1 Kemiska grundvalar Kapitel 1 Innehåll 1.1 Kemi: en översikt 1.2 Den vetenskapliga metoden 1.3 Storheter och enheter 1.4 Osäkerheter i mätningar 1.5 Signifikanta siffror och beräkningar 1.6 Enhetskonvertering
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2
Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.
Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm
Ingenjörsmetodik IT & ME 2007 Föreläsare Dr. Gunnar Malm 1 Frågor från förra gången Datorer kan beställas på: http://www.kth.se/student/support/ict/ 2.739/1.11102 (bärbar dator vid ICT) U9200 kostar 7
Ballistisk pendel laboration Mekanik II
Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den
3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.
Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på
Basåret, Fysik 2 25 februari 2014 Lars Bergström
Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:
Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 17 mars 2017 8:00 12:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4
Laboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver
Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
Laboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver
Förmågor och Kunskapskrav
Fysik Årskurs 7 Förmågor och Kunskapskrav Använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som rör energi, teknik, miljö och samhälle F Y S I K Använda fysikens
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
R AKNE OVNING VECKA 2 David Heintz, 13 november 2002
RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Theory Swedish (Sweden)
Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.
4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Välkommentill Fysik1!
Välkommentill Fysik1! Vad är fysik? Enligt Nationalencyklopedin är fysik den vetenskap som studerar materiens strukturpå grundläggande nivå och dess uppträdandeunder skilda betingelser. Genom den nära
Svar och anvisningar
15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är