Final i Wallenbergs Fysikpris
|
|
- Gösta Lind
- för 8 år sedan
- Visningar:
Transkript
1 Final i Wallenbergs Fysikpris mars Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens verkningsgrad är. Maskinens kylande effekt:. Den energi som bortförs från tidpunkten 4,0 min till tidpunkten 18,0 min motsvarar smältvärmet för att frysa allt vatten till is. Den tid det tar för att frysa allt vatten är. Den värme som bortförs under denna tid,, motsvarar, där m är vattnets massa. Denna massa ges då av.
2 Vattnet underkyls under tiden. Värmen som bortförs under denna tid,, motsvarar den värme, som måste bortföras för att sänka vattnets temperatur med. Den lägsta underkylda temperaturen ges av Svar: Det finns 0,19 kg vatten i behållaren och vattnet underkyldes till innan det började frysa till is. b) Vid tidpunkten 19,0 minuter har det gått minuter sedan allt vatten frusit till is. Värmen som bortförs under denna tid, motsvarar den värme,, som måste bortföras för att sänka isens temperatur med. Temperaturen vid 19,0 minuter blir då Svar: Vid tidpunkten 19 minuter har temperaturen sjunkit till.
3 2. a) Enligt problemtexten kan luftmotståndskraften,, approximeras med (1) där är en konstant som beror på luftens densitet och föremålets form, är objektets tvärsnittsarea samt är luftens fart relativt cyklisten. För att hålla konstant hastighet måste cyklisten utöva en kraft framåt som är lika stor som luftmotståndskraften i ekvation (1) där är cykelns fart om det är vindstilla. På tiden rör sig cyklisten sträckan och uträttar ett arbete. Den effekt som cyklisten utvecklar blir då Om hastigheten ökar till det dubbla får vi vilket innebär att effekten blir 8 ggr större. b) Enligt problemtexten är cykelns fart,, lika stor som vindens fart,. I figuren visas riktningarna för cykelns hastighet och vindens hastighet. Bilden visar schematiskt en cykel sett uppifrån (den grå linjen). Cirkeln är cyklisten. I problemtexten får vi veta att kraftkomposanten i x-riktningen (cykelns färdriktning) ges av, (2) där alla hastigheter är relativa hastigheter mellan cykel och luft.
4 Vi behöver vindens hastighet relativt cykeln och måste därför vektoriellt addera vindens hastighet relativt marken och markens hastighet relativt cykeln. I x-led får vi där vi utnyttjat att och i y-led får vi. Vi behöver också storleken på den relativa vindhastigheten,. Vi sätter in dessa samband i ekvation (2): Vid vindstilla kan vi sätta ) (3) i ekvation (1) och vi får Då vi har vind ger ekvation (3) att Kraftkomposanten från luftmotståndet i färdriktningen är lika stor som om det vore vindstilla om Svar: Vi får samma luftmotstånd som vid vindstilla om vinden kommer med vinkeln snett bakifrån.
5 3. a) I figuren nedan till vänster visas hur två strålar från en punkt på hjärtat bryts i den övre ytan på glasstaven. Efter att strålarna har brutits verkar de komma från en punkt på avståndet h under den övre ytan. Glasstavens höjd, H, är 25,0 cm och dess brytningsindex,, är 1,55. Brytningen vid gränsytan följer Snells lag: där är luftens brytningsindex och vinklarna definieras i figuren ovan. Ur figuren kan man också se att och. Bilden ska betraktas rakt uppifrån och alla vinklar är därför väldigt små. För små vinklar gäller och Snells lag kan skrivas. Vi ersätter med uttrycken ovan och får. Detta ger att Alternativ lösning: Antag ett litet värde på x, t.ex.x=0,1 cm. Detta ger. Snells lag ger och vi får att. Den sökta sträckan,, kan nu beräknas enligt. För att vara säker på att x var tillräckligt litet provar vi även med x=0,01 cm vilket visar sig ge samma svar. Svar: Hjärtat verkar befinna sig 16 cm under glasstavens övre yta. b) Ljusstrålar från hjärtat i botten på staven kommer att reflekteras i glasstavens långsidor. Reflektionerna blir starkast om strålen träffar sidan med en infallsvinkel som är större än gränsvinkeln för totalreflektion. För varje gång strålen speglas på vägen upp genom glasstaven får vi en ny spegelbild (se figur nedan). Ju fler reflektioner desto större infallsvinkel då strålen träffar den övre ytan.
6 Infallsvinkeln, α, får inte bli större än gränsvinkeln för totalreflektion om strålen ska kunna komma ut ur glasstaven. Denna vinkel kan också återfinnas vid den första reflektionen som strålen gör med en sidoyta. Med beteckningar ur figuren får vi vilket ger Kortsidan på glasstaven är 5,0 cm, dvs. 2d = 5,0 cm. För att strålen ska hinna reflekteras en gång måste. För att strålen ska hinna reflekteras två gånger måste För att strålen ska hinna reflekteras m gånger måste. För att bestämma maximalt antal reflektioner sätter vi in det minsta möjliga värdet på l och undersöker hur stort m kan bli. Det minsta möjliga värdet på l erhålls med största möjliga värde på α som är gränsvinkeln för totalreflektion. Gränsen för totalreflektion ges av. Vi får För att beräkna minsta värdet på l sätter vi Vi får vilket ger att
7 Alternativ lösning: Vi kan som en alternativ lösning studera var spegelbilderna av hjärtat ligger. När hjärtat (hj) reflekteras i stavens högra sidoyta får vi en spegelbild makerad med 1 i figuren ovan. Denna spegelbild reflekteras i sin tur i den vänstra ytan vilket ger spegelbilden markerad med 2. Om hjärtat först reflekteras i den vänstra ytan får vi spegelbild 3. Denna spegelbild reflekteras sedan i den högra ytan vilket ger spegelbild 4. Genom upprepade reflektioner får vi spegelbilder som ligger på avståndet 2d ifrån varandra. Alla ljusstrålar från hjärtat går inne i glasstaven men när de träffar den övre ytan så tycks de komma från någon av spegelbilderna. För att ljuset inte ska totalreflekteras i den övre ytan måste ljuset träffa ytan med en infallsvinkel som är mindre än gränsvinkeln för totalreflektion. För spegelbilder som ligger till vänster om staven så har strålar som träffar den vänstra delen av den övre ytan störst chans att undvika totalreflektion. I bilden ovan är en stråle från den andra spegelbilden till vänster inritad. Det är den stråle från spegelbilden som har störst infallsvinkel mot den övre ytan. För infallsvinkeln α gäller att för den andra spegelbilden. För spegelbild m får vi. För att beräkna största möjliga värde på m sätter vi in det största möjliga värdet på α vilket är gränsvinkeln för totalreflektion,. Vi får vilket ger att. Svar: Vi kan se fyra spegelbilder av hjärtat till vänster om centralbilden.
8 4. Vi definierar ett koordinatsystem så att x-axeln pekar åt höger i figurerna, y-axeln uppåt och z-axeln rakt ut från bilden. Avståndet på bilderna mellan de avlägsna stjärnorna är i samtliga fall 10 cm vilket motsvarar en vinkel på en halv bågsekund, dvs 1 cm motsvarar. På ett år flyttar sig den närliggande stjärnan 6 cm på plåten. På ett halvår borde den flytta sig 3 cm men den har flyttat sig 4 cm. På grund av paralax har den alltså flyttat sig 1 cm på ett halvår.
9 Stjärnans läge och jordens positioner med ett halvårs mellanrum bildar en triangel. Den spetsiga vinkeln, α, i triangeln har värdet. Avståndet till stjärnan betecknas r och betecknar jordens banradie. Ur figuren ser vi att vilket ger att. På ett år rör sig stjärnan 6 cm i x-led på plåten vilket motsvarar en vinkelhastighet. Stjärnans hastighet i x-led blir därför. På ett år rör sig stjärnan 2 cm i negativ riktning i y-led på plåten vilket motsvarar en vinkelhastighet hastighet i y-led blir därför. Stjärnans För att beräkna stjärnans hastighet i z-led utnyttjar vi den uppmätta blåförskjutningen. Frekvensändringen på ljuset hastigheten,, som är relaterat till den radiella där är ljusets hastighet. Vi behöver en relation mellan förändring i våglängd,, och förändring i frekvens,, och utnyttjar att. Vi deriverar med avseende på. Detta leder till Vi kan nu få ett uttryck för hastigheten i z-led Svar: Stjärnans hastighet är 57 km/s i x-led, -19 km/s i y-led och 90 km/s i z-led.
10 5. Avståndet mellan de två perfekt ledande skenorna är skenorna går ett vinkelrätt magnetfält med styrkan pinnen utför svängningen och mellan Den vänstra där och. Hastigheten på den vänstra pinnen, avseende på t., får vi genom att derivera x med När denna pinne rör sig vinkelrätt mot magnetfältet uppstår en elektromotorisk spänning,, över pinnen. Denna elektromotoriska spänning kommer att driva en ström genom den högra pinnen då kommer att påverkas av en kraft eftersom denna pinne också befinner sig i magnetfältet. Den högra pinnen kommer därför också att röra sig med en hastighet, v, som varierar med tiden. Även i denna pinne uppstår en elektromotorisk spänning, Denna spänning motverkar den spänning som uppstod i den vänstra pinnen. Strömmen som går genom den högra pinnen kommer därför att ges av.
11 Kraften på den högra pinnen kan nu skrivas Detta stämmer med det uttryck som gavs i uppgiften, Vi kan nu identifiera och beräkna konstanterna och. Svar: Konstanterna har värdena och
Final i Wallenbergs Fysikpris
Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov 1. En kylmaskin som drivs med en spänning på 220 Volt och en ström på 0,50 A kyler vatten i en behållare. Kylmaskinen har en verkningsgrad på 0,70.
Föreläsning 2 (kap , 2.6 i Optics)
5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen
1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.
10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15
Final i Wallenbergs fysikpris
Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 17 mars 2017 8:00 12:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4
3. Mekaniska vågor i 2 (eller 3) dimensioner
3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar
OPTIK läran om ljuset
OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte
λ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?
1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
Svar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.
1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad
3. Ljus. 3.1 Det elektromagnetiska spektret
3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion
Vågrörelselära & Kvantfysik, FK2002 29 november 2011
Räkneövning 5 Vågrörelselära & Kvantfysik, FK00 9 november 0 Problem 35.9 En dykare som befinner sig på djupet D 3 m under vatten riktar en ljusstråle (med infallsvinkel θ i 30 ) mot vattenytan. På vilket
Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010
Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)
Sammanfattning Fysik A - Basåret
Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med
Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
2. Ljud. 2.1 Ljudets uppkomst
2. Ljud 2.1 Ljudets uppkomst Ljud är en mekanisk vågrörelse som fortskrider i ett medium (t.ex. luft, vatten...) Någon typ av medium är ett krav; I vakuum kan ljudet inte fortskrida. I vätskor och gaser
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
TENTAMEN. Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet. Lärare: Joakim Lundin
Umeå Universitet TENTAMEN Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-28 Tid: 09.00-15.00 Kod:... Grupp:... Betyg Poäng:...
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]
TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden
OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.
Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare
Övningar Arbete, Energi, Effekt och vridmoment
Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare
WALLENBERGS FYSIKPRIS 2019
WALLENBERGS FYSIKPRIS 2019 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna
17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2
17 Trigonometri Övning 17.1 En likbent triangel har arean 10 cm. De båda lika långa sidorna i triangeln är 0 cm. estäm vinkeln mellan dessa sidor. Här är det dags för areasatsen = s1 s sin v där v ligger
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Ljusets polarisation
Ljusets polarisation Viktor Jonsson och Alexander Forsman 1 Sammanfattning Denna labb går ut på att lära sig om, och använda, ljusets polarisation. Efter utförd labb ska studenten kunna sätta upp en enkel
4. Allmänt Elektromagnetiska vågor
Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen
Tentamen i Fysik för M, TFYA72
Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen
WALLENBERGS FYSIKPRIS 2013
WALLENBERGS FYSIKPRIS 2013 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna
1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)
Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger
Repetition Ljus - Fy2!!
Repetition Ljus - Fy2 Egenskaper ör : Ljus är inte en mekanisk vågrörelse. Den tar sig ram utan problem även i vakuum och behöver alltså inget medium. Exakt vilken typ av vågrörelse är återkommer vi till
Text, Sofia Ström. Foto, Ellen Kleiman. Ljusets reflektion. Syfte: Se hur ljusets reflekteras i konkava och konvexa speglar. Material: Optisk bänk
Text, Sofia Ström. Foto, Ellen Kleiman. Ljusets reflektion Syfte: Se hur ljusets reflekteras i konkava och konvexa speglar. Optisk bänk Spänningskub Lins +10 Optiklampa Spalt med 5 spalter Spalthållare
The nature and propagation of light
Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
v F - v c kallas dispersion
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
LUNDS KOMMUN POLHEMSKOLAN
LUNDS KOMMUN POLHEMSKOLAN TEST I FYSIK FÖR FYSIKPROGRAMMET Namn: Skola: Kommun: Markera rätt alternativ på svarsblanketten (1p/uppgift) 1. Vilka två storheter måste man bestämma för att beräkna medelhastigheten?
Studieanvisning i Optik, Fysik A enligt boken Quanta A
Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2. 5 juni :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL02/TEN: Fysik 2 för basår (8 hp) Tentamen Fysik 2 5 juni 205 8:00 2:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 24 januari 2013 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Ljudhastigheten i is är 180 m 55 10 3 s 3,27 103 m/s. Ur diagrammet avläser vi att det tar 1,95
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 22 januari 2009 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Rörelsemotståndsarbetet på nervägen är A n = F motst s = k mg s = k (2 180 + 52 100)
Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla
Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva
Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)
Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad
Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00
Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h 9 högskolepoäng TentamensKod: Tentamensdatum: 2017-05-29 Tid: 09:00 13:00 Hjälpmedel: Grafritande miniräknare, linjal, gradskiva, gymnasieformelsamling,
LÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?
Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
Polarisation. Abbas Jafari Q2-A. Personnummer: april Laborationsrapport
Polarisation Laborationsrapport Abbas Jafari Q2-A Personnummer: 950102-9392 22 april 2017 1 Innehåll 1 Introduktion 2 2 Teori 2 2.1 Malus lag............................. 3 2.2 Brewstervinklen..........................
STOCKHOLMS UNIVERSITET FYSIKUM
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning del 2 i Fysik A för Basåret Tisdagen den 10 april 2012 kl. 9.00-13.00 (Denna tentamen avser andra halvan av Fysik A, kap 2 och 7-9 i Heureka. Fysik A)
Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv
1 Avbildningskvalitet Föreläsning 1-2 Brytning i sfärisk yta Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv Brytningslagen (Snells lag): n sin i = n sin i Paraxial approximation (vid
Denna vattenmängd passerar också de 18 hålen med hastigheten v
FYSIKTÄVLINGEN KVLIFICERINGS- OCH LGTÄVLING 3 februari 000 LÖSNINGSFÖRSLG SVENSK FYSIKERSMFUNDET 1. a) Den vattenängd so passerar slangen per sekund åste också passera något av de 18 hålen. Den vattenängd
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L
Om ellipsen och hyperbelns optiska egenskaper
Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 111 Sal KÅRA, T1 Tid 14-18 Kurskod Provkod Kursnamn/benämning BFL11 TEN1 Fysik A för tekniskt/naturvetenskapligt
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och gradskiva
Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST17h KBASX17h 9 högskolepoäng Tentamensdatum: 2018-05-28 Tid: 09:00-13:00 Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och
Elevlaborationer Bordsoptik laser Art.nr: 54624
Elevlaborationer Bordsoptik laser Art.nr: 54624 Laser En laserstråle är speciell på flera sätt den består av en enda färg, t.ex. röd eller grön. ljuset går nästan helt parallellt (utan att sprida ut sig).
Ljus och strålning. Klass: 9H
Ljus och strålning Namn: Klass: 9H Dessa förmågor ska du träna: använda fysikens begrepp, modeller och teorier för att beskriva och förklara fysikaliska samband i naturen och samhället genomföra systematiska
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00
FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?
TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola
Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - tentamen Torsdagen den 27:e maj 2010, kl 08:00 12:00 Fysik del B2 för
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen
Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion
Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt
Övning 1 Dispersion och prismaeffekt
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
WALLENBERGS FYSIKPRIS 2012
WALLENBERGS FYSIKPRIS 212 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna
Tentamen Optik, FYSA11, 2012-05-25
Tentamen Otik, FYSA, 0-05-5 Hjälmedel: TEFYMA, ormelsamling, linjal, ickräknare och biogat ormelblad. Glöm inte att beskriva hur du kommer ram till dina svar. Även delvis lösta ugiter kan ge oäng.. Den
Alla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
TENTAMEN. Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling.
Umeå Universitet TENTAMEN Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin, Magnus Cedergren, Karin Due, Jonas Larsson Datum:
9-2 Grafer och kurvor Namn:.
9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och
Grundläggande om krafter och kraftmoment
Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Lösningar till BI
Lösningar till BI 160513 3 3 V 5010 m 1a. Förådstuben: n ( p1 p21) 7 MPa 144 mol. RT (8,31 J/mol K) 293 K 1b. Experimenttuben : pv n n1 n n 3,28 n 147 mol RT nrt 147 8,31293 Ny volym blir då: V 44,8. 6
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s
140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger
Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297
Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda
Övning 4 Polarisation
Övning 4 Polarisation Transmission genom ett polarisationsfilter Malus lag: I 1 = cos 2 (θ) θ I 1 Reflektion och transmission I R Polariserat! Opolariserat i B n n i B I T Brewstervinkeln (polarisation
Kaströrelse. 3,3 m. 1,1 m
Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna
Optik. Läran om ljuset
Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker
Föreläsning 3: Radiometri och fotometri
Föreläsning 3: Radiometri och fotometri Radiometri att mäta strålning Fotometri att mäta synintrycket av strålning (att mäta ljus) Radiometri används t.ex. för: Effekt på lasrar Gränsvärden för UV Gränsvärden
Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson
, MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8
Strålningsfält och fotoner. Våren 2016
Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
Ljuslaboration 2 ljusbrytning och reflektion
Ljuslaboration 2 ljusbrytning och reflektion Namn: Klass: Syfte: Du ska förstå varför ljus bryts och vad totalreflektion är samt några tillämpningsområden för totalreflektion. 1. Du har kanske stuckit
WALLENBERGS FYSIKPRIS 2011
WALLENBERGS FYSIKPRIS 2011 Tävlingsuppgifter (Kvalificerings- och lagtävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll
Lösningar till Tentamen i Fysik för M, del 2 Klassisk Fysik (TFYY50) Lördagen den 24 April 2004, kl
ösningar till entamen i Fysik för M, del Klassisk Fysik (FYY0) ördagen den 4 pril 004, kl. 4-8 Uppgift. a, b. c.3 a, b, d.4 b, d Uppgift a) m 0 röd och blå linje sammanfaller m m m 3 blå röd θ 0 injerna
6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Kortfattade lösningar till tenta för LNC022, :
Kortfattade lösningar till tenta för LNC022, 2015-04-15: 1. (a) Pythagoras sats ger hypotenusan: c 2 = 16 2 + 30 2 = 1156, c = 1156 = 34 cm. Vinkeln v mellan sidorna 16 och 34 ges av cos v = 16 30 34 eller