Ljusets polarisation

Storlek: px
Starta visningen från sidan:

Download "Ljusets polarisation"

Transkript

1 Ljusets polarisation Viktor Jonsson och Alexander Forsman 1 Sammanfattning Denna labb går ut på att lära sig om, och använda, ljusets polarisation. Efter utförd labb ska studenten kunna sätta upp en enkel modell för polariserat ljus, förstå hur polarisatorer fungerar samt kunna förklara hur dipoler i ett material påverkar reflektionen av ljus. Studenten ska också lära sig hantera optisk utrustning. Labben består av följande två moment: 1. Experimentellt påvisa Malus lag 2. Bestämma Brewstervinkeln och brytningsindex för svart glas I rapporten ska studenten förklara fysiken bakom de experiment som utfördes samt svara på frågorna i labbmomenten. 1

2 2 Viktig information 2.1 Förberedelser Innan labbtillfället ska hela denna labbeskrivning läsas igenom. Ni ska kunna svara på frågorna i avsnitt (3.3) och ha en god uppfattning om vad ni ska göra och hur detta ska genomföras. Det är nödvändigt att ni har med er penna, block och miniräknare på labben. 2.2 Utrustning På titelsidan finns en figur som visar en av de experimentuppsättningar som ska användas. Ni kommer använda er av en HeNe-laser för moment 1 och en något kraftfullare halvledarlaser för moment 2. Här följer en komplett lista på utrustningen som används för en uppsättning av labben. 1. Optisk skena med 3 bärare 2. Optisk effektmätare med detektor 3. HeNe-laser med tillbehör 4. Halvledarlaser med tillbehör 5. Hållare till linser och lasern m.m. 6. Optisk Goniometer 7. 2 Polaroidhållare 8. Linjeringsapertur 9. Svart glas 10. Retardationsskiva 2.3 Förhållningsregler Var försiktiga under labben för att undvika skador av er själva och utrustningen. Alla optiska komponenter är dyrbara och ska hanteras varsamt. Det svarta glaset ska bara vidröras på sidorna för att undvika fingeravtryck på den reflekterande ytan. Undvik att hålla ögonen i höjd med lasern och ta av er klockor samt andra blänkande föremål som kan reflektera lasern. Då laser kan orsaka permanenta skador i ögonen är det viktigt att blockera ljuset med en pappersbit varje gång ni ska ändra i uppställningen. Vinkla aldrig lasern bort från bordet och undvik att stänga av lasern då det tar ett tag för den att hitta jämvikt. 3 Bakgrundsteori 3.1 Ljusets polarisation Ljus är elektromagnetiska vågor som oscillerar med en viss vinkelfrekvens ω och rör sig med en hastighet c km/s. Om denna våg färdas i den positiva z-riktningen kan det elektriska fältet beskrivas enligt E(t, z) = E 0 e i(ωt kz), där E 0 = E 0x ˆx + E 0y ŷ. 2

3 Vi ser att det elektriska fältet är en vektor som ligger i ett plan vinkelrätt mot vågens färdriktning. Om vågens fältbidrag E är helt slumpmässigt orienterat i x, y-planet säger vi att ljuset är opolariserat. Om det är större sannolikhet att E är riktad längs med någon axel säger man att ljuset är delvis polariserat. Om allt E-fält är riktat längs med en och samma axel är ljuset linjärpolariserat. 3.2 Polarisatorer Det finns olika typer av polarisatorer där den vanligaste är den linjära polarisatorn. För att förstå dessa så betraktar vi en våg med fältet E. Fältet efter en ideal polarisator kan approximeras enligt E pol = ˆn (E ˆn) = E cos θ ˆn där θ är vinkeln mellan vågens fält E och polarisatorns karaktäristiska riktning ˆn. Som ni ser får vågen ett fält riktat längs med ˆn, vilket är en kvantmekanisk mekanism som inte kan förklaras med en klassisk teori. När opolariserat ljus som består av flera vågor passerar en linjär polarisator kommer intensiteten minska enligt I op = ηi 0 cos 2 θ = ηi 0 2 där I 0 är intensiteten av det inkommande ljuset. För att hantera verkliga polarisatorer så kommer även en faktor 0 η 1 in i uttrycket. För linjärpolariserat ljus kommer alla fältbidrag från vågorna vara riktade åt samma håll vilket ger I lp = ηi 0 cos 2 θ där θ nu är vinkeln mellan ljusets polarisation och ˆn definierad sen tidigare. Detta är Malus lag. En annan typ av polarisator är kopplad till reflektioner i dieletriska medium som t.ex. glas. Detta kan förklaras genom att först betrakta ljus som faller på en yta med brytningsindex n 2 från ett medium med brytningsindex n 1. Enligt Snells lag får vi n 1 sin θ 1 = n 2 sin θ 2, där θ 1 är infallsvinkeln och θ 2 är brytningsvinkeln. En del av ljuset kommer också att reflekteras i en vinkel som är lika stor som θ 1. Betrakta nu en ljusstråle med en polarisation som ligger i det infallande planet (Se figur 1). 3

4 Infallande Reflekterade Brytna Figur 1: Infallande linjärpolariserat ljus där dubbelpilarnas längd motsvarar intensiteten på ljuset i de olika strålvägarna. Den fysikaliska bakgrunden till en minskande intensitet när man närmar sig α = 90 kan kvalitativt förstås genom att betrakta elektriska dipoler i ytan och hur dessa interagerar med det p-polariserade ljuset. Vågen absorberas och re-emitteras sedan av dessa oscillerande dipoler vid ytan. Dipolerna, som ger den brutna strålen, oscillerar i polarisationsriktningen för det brutna ljuset. Samma dipoler genererar även det reflekterade ljuset, men de kan inte sända ut strålning i dipolmomentets riktning. Resultatet blir att ljuset inte kan reflekteras mot ytan då. θ 1 + θ 2 = 90. Om detta gäller kommer sin θ 2 = cos θ 1 vilket tillsammans med Snells lag ger ( ) n2 n 1 sin θ 1 = n 2 cos θ 1 = θ 1 = arccos. Denna vinkel θ 1 = θ B kallas för Brewstervinkeln. Om opolariserat ljus med en infallsvinkel θ B får reflekteras mot materialet kommer allt de reflekterade ljuset vara linjärpolariserat med en riktning som är vinkelrätt mot infallsplanet. Ett tredje sätt att polarisera ljuset på är att låta ljuset reflekteras på små partiklar. De ljus som reflekteras med en vinkel som är vinkelrät mot inkommande ljuset kommer att vara helt linjärpolariserat i en riktning som är vinkelrät mot både det infallande ljuset och det reflekterande ljuset. Detta innebär att om du tittar på himlen en solig dag kommer ljuset från himlen vara delvis polariserad. I en rät vinkel mot solen kommer det blåa ljuset från himlen vara helt linjärpolariserat. n 1 4

5 3.3 Frågor 1. Hur kan ljus vara delvis polariserat? 2. Hur kan man bestämma brytningsindex för glas med hjälp av en polarisator och en intensitetsmätare? 4 Utförande 4.1 Malus lag I detta moment ska ni undersöka hur intensiteten från polariserat ljus förändras när en polarisator i en viss vinkeln placeras framför. Processen är följande: 1. Montera det första polarisationsfiltret (polarisatorn) på rälsen och rotera det så att endast vertikalt polariserat ljus kan passera genom (markeringen på filtret parallell med rälsen). 2. Upprepa steg 2 med det andra polarisationsfiltret (analysatorn) och placera det framför det första filtret. 3. Montera fotodetektorn på rälsen så att den är vänd mot lasern. Koppla in och sätt igång förstärkaren. 4. Sätt igång lasern och justera alla komponenter så att laserstrålen träffar mitten av detektorn. 5. Anteckna intensiteten för den transmitterade laserstrålen. 6. Rotera det andra polarisationsfiltret 10 och anteckna den nya intensiteten. 7. Upprepa steg 7 och samla intensitetsmätningar för vinklar mellan 0 och Avmontera de komponenter ni har använt så att uppställningen är som den var när ni började. 4.2 Brewstervinkeln I detta moment ska ni undersöka reflektionen av polariserat ljus från svart glas och där igenom bestämma Brewstervinkeln samt beräkna glasets brytningsindex. 1. Montera upprätningsaperturen på en hållare och placera på rälsen. Sätt igång lasern och skjut aperturen längs med rälsen. Justera höjden på lasern och lutningen med hjälp av de sex skruvarna på laserhållaren så att laserstrålen kan passera aperturen längs med rälsen. 5

6 2. Montera goniometern i en hållare på andra änden av rälsen. Packa upp det svarta glaset (obs. hantera det varsamt och undvik att få fingeravtryck på fram- eller baksidan) och säkra det i mitten av visartavlan på goniometern med hjälp av klämman. Se till att kanten av glaset precis överlappar 90 -axeln på visartavlan, som i figur (2). Justera lutningen och riktningen på glaset så att den reflekterade strålen passerar genom aperturen på samma sätt som i steg Placera en polarisator på rälsen framför lasern och rotera den så att endast horisontellt polariserat ljus kan passera igenom (markeringen på filtret lodrät). 4. Montera fotodetektorn i hålet bredvid visartavlan på goniometern, koppla in och sätt igång förstärkaren. Se till att detektorn är riktad mot mittpunkten av visartavlan. 5. Sätt goniometerns pekare på 30 och lås den. 6. Rotera visartavlan så att den reflekterade laserstrålen träffar mitten av fotodetektorn. Läs av och anteckna intensiteten samt laserns infallsvinkel mot glaset. 7. Ändra nu goniometerns pekare med steg om 5 och repetera steg 6 till att ljusets infallsvinkel är Avmontera de komponenter ni har använt så att uppställningen är som den var när ni började. Figur 2: En goiniometer. 6

7 5 Rapportskrivning Till denna laboration ska en rapport skrivas där resultaten med förklaring ska finnas med. Ni ska förklara med egna ord fysiken bakom de formler ni använder och diskutera rimligheten i era svar, jämför gärna med externa källor. Disponera rapporten väl med rubriker och underrubriker. Försök att tydligt visualisera den data ni har fått fram och se till att det framgår hur datan användes för att ta fram era resultat. Använd figurer där axlar tydligt förklaras i figurtexten. Skriv så tydligt ni kan och skicka in rapporten i pdf-format. Rapporten kommer att bedömmas enligt 3 kriterier. 1. Fysiken Är era beskrivningar korrekta? Är era resultat rimliga och har de rätt enheter? 2. Struktur Man ska kunna följa vad du har skrivit utan att tappa bort sig. Bra disposition och grafer med tydliga axlar och förklaringar är viktigt. 3. Innehåll Finns alla delar av labben inklusive resultat med i rapporten? Skriv Rapporten ska skickas till laborationsassistenten senast två veckor efter utförd labb, om ni lämnar in för sent kommer ni inte kunna få A på tentan. Om ni inte blir godkända direkt så får ni feedback från mig och chans att komplettera innan ni skickar in igen. Labben är en obligatorisk del i kursen så ni måste bli godkända för att klara kursen. Lycka till! 7

Institutionen för Fysik 2013-10-17. Polarisation

Institutionen för Fysik 2013-10-17. Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra

Läs mer

Övning 4 Polarisation

Övning 4 Polarisation Övning 4 Polarisation Transmission genom ett polarisationsfilter Malus lag: I 1 = cos 2 (θ) θ I 1 Reflektion och transmission I R Polariserat! Opolariserat i B n n i B I T Brewstervinkeln (polarisation

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Polarisation laboration Vågor och optik

Polarisation laboration Vågor och optik Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Institutionen för Fysik Polarisation

Institutionen för Fysik Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat-, linjärt- och cirkulär polariserat ljus. Exempel på komponenter som kan

Läs mer

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens Hur funkar 3D bio? Lunds Universitet 2016 Laborationsrapporter Lunds Universitet 2016 Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen

Läs mer

Polarisation Laboration 2 för 2010v

Polarisation Laboration 2 för 2010v Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Vågrörelselära och Optik VT14 Lab 3 - Polarisation

Vågrörelselära och Optik VT14 Lab 3 - Polarisation Vågrörelselära och Optik VT14 Lab 3 - Polarisation Stockholms Universitet 2014 Kontakt: olga.bylund@fysik.su.se Instruktioner för redogörelse för Laboration 3 Denna laboration består utav fyra experiment

Läs mer

Polarisation. Abbas Jafari Q2-A. Personnummer: april Laborationsrapport

Polarisation. Abbas Jafari Q2-A. Personnummer: april Laborationsrapport Polarisation Laborationsrapport Abbas Jafari Q2-A Personnummer: 950102-9392 22 april 2017 1 Innehåll 1 Introduktion 2 2 Teori 2 2.1 Malus lag............................. 3 2.2 Brewstervinklen..........................

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Polarisation en introduktion (för gymnasiet)

Polarisation en introduktion (för gymnasiet) Polarisation en introduktion 1 Polarisation en introduktion (för gymnasiet) 1 Ljusets polarisationsformer Låt oss för enkelhets skull studera en stråle med monokromatiskt ljus, dvs. ljus som bara innehåller

Läs mer

Polarisation Stockholms Universitet 2011

Polarisation Stockholms Universitet 2011 Polarisation Stockholms Universitet 2011 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus 2.3 Elliptiskt polariserat

Läs mer

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook. CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

Föreläsning 6: Polarisation

Föreläsning 6: Polarisation 1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför

Läs mer

Föreläsning 2 (kap , 2.6 i Optics)

Föreläsning 2 (kap , 2.6 i Optics) 5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen

Läs mer

Föreläsning 6: Polarisation

Föreläsning 6: Polarisation 1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

Michelson-interferometern och diffraktionsmönster

Michelson-interferometern och diffraktionsmönster Michelson-interferometern och diffraktionsmönster Viktor Jonsson vjons@kth.se 1 Sammanfattning Denna labb går ut på att förstå fenomenen interferens och diffraktion. Efter utförd labb så ska studenten

Läs mer

Lösningar till Tentamen i Fysik för M, del 2 Klassisk Fysik (TFYY50) Lördagen den 24 April 2004, kl

Lösningar till Tentamen i Fysik för M, del 2 Klassisk Fysik (TFYY50) Lördagen den 24 April 2004, kl ösningar till entamen i Fysik för M, del Klassisk Fysik (FYY0) ördagen den 4 pril 004, kl. 4-8 Uppgift. a, b. c.3 a, b, d.4 b, d Uppgift a) m 0 röd och blå linje sammanfaller m m m 3 blå röd θ 0 injerna

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Vågor och Optik 5hp. Polarisationslaboration

Vågor och Optik 5hp. Polarisationslaboration Vågor och Optik 5hp Polarisationslaboration av Henrik Bergman Utförs av: Henrik Bergman Georgos Davakos Uppsala 2015-12-04 Innehållsförteckning 1. Introduktion 2. Teori 3. Metod och materiel 3.1 Utrustning

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Tentamen i Optik för F2 (FFY091)

Tentamen i Optik för F2 (FFY091) CHALMERS TEKNISKA HÖGSKOLA 2009-03-10 Teknisk Fysik 08.30-12.30 Sal: H Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Tentamen i Optik för F2 (FFY091)

Tentamen i Optik för F2 (FFY091) CHALMERS TEKNISKA HÖGSKOLA 2008-08-26 Teknisk Fysik 08.30-12.30 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt).

1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). AKUSTIK Håkan Wennlöf, hwennlof@kth.se Övning : Akustik. Intensitet är effekt per area I = P A [ ] W m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). För ljudvåg gäller

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor. FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40

Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Åsa Bengtsson: asa.bengtsson@fysik.lth.se Emma Persson: tfy15epe@student.lu.se Lärandemål I den här laborationen får Du experimentera med

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för

Läs mer

Övning 9 Tenta från Del A. Vägg på avståndet r = 2.0 m och med reflektansen R = 0.9. Lambertspridare.

Övning 9 Tenta från Del A. Vägg på avståndet r = 2.0 m och med reflektansen R = 0.9. Lambertspridare. Övning 9 Tenta från 2016-08-24 Del A 1.) Du lyser med en ficklampa rakt mot en vit vägg. Vilken luminans får väggen i mitten av det belysta området? Ficklampan har en ljusstyrka på 70 cd och du står 2.0

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-05-04 Tentamen i Fotonik - 2015-05-04, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

ett uttryck för en våg som beskrivs av Jonesvektorn: 2

ett uttryck för en våg som beskrivs av Jonesvektorn: 2 Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

Övning 9 Tenta

Övning 9 Tenta Övning 9 Tenta 014-11-8 1. När ljus faller in från luft mot ett genomskinligt material, med olika infallsvinkel, blir reflektansen den som visas i grafen nedan. Ungefär vilket brytningsindex har materialet?

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Frågor till filmen Vi lär oss om: Ljus

Frågor till filmen Vi lär oss om: Ljus Frågor till filmen Vi lär oss om: Ljus 1. Hur är vår planet beroende av ljus? 2. Vad är ljus? 3. Vad är elektromagnetisk energi? 4. Vad kallas de partiklar som energin består av? 5. Hur snabbt är ljusets

Läs mer

Mer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation?

Mer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation? Mer om EM vågors polarisation Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation? Svänger x Svänger y 2π Superposition av x och y polariserade EM vågor (Ritar bara positivt

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 Hjälpmedel: Handbok, kopior av avsnitt om Fouirertransformer och Fourieranalys

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

Luft. film n. I 2 Luft

Luft. film n. I 2 Luft Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX 1 (6) LABORATION 2 MIKROSKOPET Att läsa i kursboken: sid. 189-194 Förberedelseuppgifter:

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013 Zeemaneffekt Projektlaboration, Experimentell kvantfysik, FK5013 Introduktion En del energinivåer i en atom kan ha samma energi, d.v.s. energinivåerna är degenererade. Degenereringen kan brytas genom att

Läs mer

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p) Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Polariserat Ljus Laborationsinstruktioner Våglära och optik FAFF30

Polariserat Ljus Laborationsinstruktioner Våglära och optik FAFF30 Polariserat Ljus 18 Laborationsinstruktioner Våglära och optik FAFF3 Lärandemål Sftet med laborationen är att få en utökad förståelse för ljusets transversella vågegenskap, som t.ex. möjligheten att polarisera

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2012-04-10 Tentamen i Fotonik - 2012-04-10, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

E-II. Diffraktion på grund av ytspänningsvågor på vatten

E-II. Diffraktion på grund av ytspänningsvågor på vatten Q Sida 1 av 6 Diffraktion på grund av ytspänningsvågor på vatten Inledning Hur vågor bildas och utbreder sig på en vätskeyta är ett viktigt och välstuderat fenomen. Den återförande kraften på den oscillerande

Läs mer

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Ljus och strålning. Klass: 9H

Ljus och strålning. Klass: 9H Ljus och strålning Namn: Klass: 9H Dessa förmågor ska du träna: använda fysikens begrepp, modeller och teorier för att beskriva och förklara fysikaliska samband i naturen och samhället genomföra systematiska

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25 FAFA60-2016-05-10 Tentamen i Fotonik - 2016-05-10, kl. 08.00-13.00 FAFF25 Fysik för C och D, Delkurs i Fotonik FAFA60 Fotonik för C och D Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

Instuderingsfrågor extra allt

Instuderingsfrågor extra allt Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

LABORATION 1 AVBILDNING OCH FÖRSTORING

LABORATION 1 AVBILDNING OCH FÖRSTORING LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se

Läs mer

Vågrörelselära & Kvantfysik, FK2002 29 november 2011

Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Räkneövning 5 Vågrörelselära & Kvantfysik, FK00 9 november 0 Problem 35.9 En dykare som befinner sig på djupet D 3 m under vatten riktar en ljusstråle (med infallsvinkel θ i 30 ) mot vattenytan. På vilket

Läs mer

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande

Läs mer

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tillåtna hjälpmedel: Två st A4-sidor med eget material, på tentamen utdelat datablad, på tentamen utdelade sammanfattningar

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv

Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv 1 Avbildningskvalitet Föreläsning 1-2 Brytning i sfärisk yta Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv Brytningslagen (Snells lag): n sin i = n sin i Paraxial approximation (vid

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Repetitionsuppgifter i vågrörelselära

Repetitionsuppgifter i vågrörelselära Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX (5) Att läsa före lab: LABORATION 2 MIKROSKOPET Synvinkel, vinkelförstoring, luppen och

Läs mer

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant Fysik - Måldokument Lena Folkebrant FYSIK ÅK 9 AKUSTIK OCH OPTIK Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Fysik TFYA86. Föreläsning 9/11

Fysik TFYA86. Föreläsning 9/11 Fysik TFYA86 Föreläsning 9/11 1 Elektromagnetiska vågor (ljus) University Physics: Kapitel 32, 33, 35, 36 (delar, översiktligt!) Översikt och breddning! FÖ: 9 (ljus) examineras främst genom ljuslabben

Läs mer