Diffraktion och interferens
|
|
- Britt-Marie Vikström
- för 9 år sedan
- Visningar:
Transkript
1 Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel på hur interferens och diffraktion kan användas i mät- och karaktäriseringsmetoder. Genom att skriva en utförlig laborationsrapport tränas du i att bearbeta ny kunskap, formulera den, kritiskt granska dina resonemang och kommunicera kunskap till andra. Mål Du ska kunna beräkna intensitetsfördelningen för enkel- och dubbelspalt och experimentellt verifiera de teoretiskt framtagna värdena. Du kommer att utnyttja dina nya kunskaper genom att bestämma brytningsindex för vatten genom en interferensmetod, samt i mån av tid bestämma tjockleken på ett hårstrå. Laborationen examineras skriftligt i en utförlig laborationsrapport.
2 Innehåll 1 Introduktion Teori Enkelspalt Dubbelspalt Gitter Cirkulärt hål Utrustning Uppgifter Moment Spaltbredd... 5 Intensitet... 5 Gitterkonstant... 6 Cirkulärt hål... 6 Extrauppgifter i mån av tid Moment Brytningsindex... 6 BILAGA 1 Laborationsguide (genomförande)... 7 Inställning av fotodiod... 7 BILAGA 2 - Beräkningstabeller
3 1 Introduktion När ljus avviker från en rätlinjig rörelse kallas det för diffraktion. Detta sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör det möjligt att höra ljud bakom ett hörn. Interferensfenomenet uppkommer då två eller fler vågor överlappar varandra, baserat på superpositionsprincipen. Diffraktion är något man stöter på vid mikroskopi. Detta fenomen avgör vad man kan upplösa, alltså den minsta struktur man kan urskilja. Upplösningen (diffraktionsgränsen) hos ett mikroskop ligger på ungefär halva våglängden av det ljus som används i det. Intervallet av våglängder som det mänskliga ögat kan uppfatta, och som alltså kan användas i ett ljusmikroskop, ligger mellan 400 nm (blått ljus) till 700 nm (rött ljus). Inom biologin används röntgenkristallografi för att studera makrostrukturer hos t.ex. proteiner. Röntgen-kristallografi är baserat på diffraktion av kortvågig strålning (röntgenstrålning) i proteinets struktur. Väteatomernas läge i kristalliserade proteiner kan bestämmas genom diffraktion av neutroner. 2 Teori Teorin bakom uttrycken som ges nedan finns att läsa om i kapitel 38 och 39 i kursboken. 2.1 Enkelspalt Intensitetsuttrycket för Fraunhoferdiffraktion 1 i en enkelspalt ges av där ( ), (1). (2) är intensiteten vid centralmaximat, är enkelspaltens bredd, är diffraktionsvinkeln och är ljusets våglängd. Intensitetsfördelningen som funktion av vinkeln i radianer illustreras i Fig. 1. Man kan visa att intensitetsfunktionen har minimum då och maximum då (3). (4) 1 Fraunhofferdiffraktion innebär att ljuskällan är placerad oändligt långt borta från diffraktionsobjektet. Detta medför att vågorna kan ses som plana, vilket även är fallet med en HeNe-laser. 2
4 Figur 1. Diffraktionsmönster från en enkelspalt. 2.2 Dubbelspalt Intensitetsfördelningen efter en dubbelspalt är ( ) ( ), (5) där ges av Ekv. 2. Vidare är där betecknar spaltavståndet för dubbelspalten. 2, (6) Jämförelse mellan uttrycken för intensitetsfördelningarna efter en enkelspalt och en dubbelspalt visar att intensitetsfördelningen efter dubbelspalten är uppbyggd av diffraktionsdelen från enkelspalten och en interferensdel från två koherenta källor (de båda spalterna). Intensiteten kommer att ha sitt maximum då där, (7) 2 I Ekv. 5 och 9 finns en faktor 4 med, som innebär att intensiteten i centralmaximat är fyra gånger starkare efter dubbelspalt/gitter än efter enkelspalt. 3
5 . (8) Figur 2. Diffraktionsmönster från en dubbelspalt. 2.3 Gitter Om plana vågor passerar ett gitter ges intensitetsfördelningen efter gittret av ( ) ( ( ) ( ) ), (9) där är antalet spalter. Även här beskriver den första delen diffraktion från enkelspalten medan den andra beskriver interferensmönstret från stycken koherenta källor. Vid ett stort antal spalter kommer mönstret att visa smala starka maxima (huvudmaxima) för samma vinklar som beskrivs i Ekv. 7 och 8, men det kommer också att uppvisa ljussvaga sidomaxima då där ( ), (10) (11) och betecknar gitterkonstanten. Dessa sidomaxima kommer att undertryckas av diffraktion i enkelspalten. 4
6 2.4 Cirkulärt hål Om plana vågor passerar ett cirkulärt hål med diameter, gäller för första intensitets-minimum att. (12) 3 Utrustning Laborationsuppställningen tillhandahåller följande utrustning: En rörlig fotodiod för mätning av intensitetsfördelning Skrivare med förförstärkare He-Ne-laser med våglängd =633 nm Enkelspalt, dubbelspalt, gitter samt cirkulärt hål, fastsatta i diabildshållare Vit skärm Plexiglasvanna Optisk räls för fastsättning av ryttare Linjal Ni måste själva se till att ni medtar övrig utrustning som krävs för beräkningar etc. Sådan utrustning är till exempel kursbok, formelsamling, räknare, usb-minne, penna och papper. 4 Uppgifter 4.1 Moment 1 Spaltbredd Skapa ett intensitetsspektrum genom att skicka en laserstråle genom en enkelspalt med spaltbredd 0.08 mm. Verifiera spaltbredden genom experimentella beräkningar med data från intensitetsfördelningen. Genomförandet är beskrivet i Bilaga 1 Laborationsguide. Fyll i dina resultat i Bilaga 2 Beräkningstabeller. Gör en matematisk felskattning av det beräknade värdet på spaltbredden. Intensitet Ta fram det teoretiska förhållandet mellan topparnas intensitet vid enkel respektive dubbelspalt. Skriv in värdena i en tabell och jämför dem med experimentellt uppmätta värden. 3 Bestäm den teoretiska intensitetsfördelningen som funktion av böjningsvinkeln, alltså ( ), för enkel respektive dubbelspalt. Verifiera uttrycket experimentellt genom att mäta avstånden mellan intensitetstopparna. Hitta ett uttryck för intensiteten i varje maximum som en kvot mellan sidomaxima =, samt och centralmaximum,, i båda fallen och verifiera värdena experimentellt. 3 Den experimentella mätningen av intensitetsfördelningen skall göras dels genom att mäta höjden på topparna, dels genom att mäta vinkeln till de olika maxima. 5
7 Gitterkonstant Montera gittret med gitterkonstant =10 mm -1. Verifiera experimentellt gitterkonstanten för gittret genom mätningar på intensitetsfördelningen. Gör en matematisk felskattning av det beräknade värdet på gitterkonstanten. Cirkulärt hål Om ljus med våglängd passerar ett cirkulärt hål med diametern, gäller att första intensitetsminimum uppfyller Ekv. (8). Verifiera detta experimentellt. Välj hålet med = 0.3 mm. Extrauppgifter i mån av tid Bestäm tjockleken på ett av dina hårstrån och avstånden mellan spåren på en CD-skiva. 4.2 Moment 2. Brytningsindex Bestäm brytningsindex för vatten genom att placera en vanna med vatten (ett stort, rektangulärt kärl med väggar av genomskinlig plast) mellan lasern och fotodioden. Innan laborationen genomförs skall du beskriva hur du tänker genomföra experimentet. 6
8 BILAGA 1 Laborationsguide (genomförande) Inställning av fotodiod 1) Kontrollera att laserstrålen är parallell med den optiska bänken genom att föra ryttare samt en spalt längs den optiska rälsen. Justera vid behov så att felet är maximalt en halv laserstrålediameter. 2) Placera det objekt som skall användas, spalt, gitter eller hål, på lämpligt avstånd från fotodioden. Interferensmönstret skall rymmas med god marginal inom längdskalan för dioden. 3) Justera höjden på fotodioden så att intensitetsmaximum träffar i centrum på dioden. För fotodioden fram och tillbaka och observera interferensmönstret. Om mönstret är snett i horisontalled innebär det att spalten är snett fastsatt. Justera det i så fall. 4) Starta av laborationshandledaren angivet program i Labview. Starta en mätning. Reglera spänningen på strömkällan till fotodiodens motor så att dioden rör sig tillräckligt långsamt för att mätningen ska ge bra resultat. Lämplig spänning ligger kring 4 V. 5) För att man skall kunna översätta en viss sträcka på datorskärmen till den verkliga sträcka som fotodioden har rört sig måste man ta fram en konverteringskonstant. Detta gör man enklast genom att mäta den sträcka som fotodioden har rört sig och relatera den till motsvarande uppritande längd i x.led i datorprogrammet. 6) Spara era värden i en textfil på ett medtaget usb-minne, exempelvis som gitter_a.txt. Dessa kan sedan plottas i lämpligt program, t.ex. Origin. De grafer som behandlas ska vara del av den skriftliga rapporten. 7
9 BILAGA 2 - Beräkningstabeller Tabell 1. ENKELSPALTBREDD Tabell 2. INTENSITETSFÖRDELNING ENKELSPALT Ordning m Intensitetfördelning teoretiskt Vinkel från m = 0 till sidomaxima m 0 [rad] Intensitetfördelning experimentellt ( ) ( ) 0-centralmaxima Med hjälp av vinkeln Med hjälp av höjden 1-sidomaxima 2-sidomaxima 3-sidomaxima Tabell 3. INTENSITETSFÖRDELNING DUBBELSPALT Ordning m Intensitet teoretiskt Vinkel från m = 0 till sidomaxima m 0 [rad] Intensitet experimentellt ( ) ( ) 0-centralmaxima 1-sidomaxima 2-sidomaxima 3-sidomaxima 8
10 Tabell 4. BERÄKNING AV GITTERKONSTANT Tabell 5. BERÄKNING CIRKULÄRT HÅL SAMT HÅRSTRÅ 9
Diffraktion och interferens
Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att
Diffraktion och interferens
Institutionen för Fysik 005-10-17 Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det
Diffraktion och interferens
Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd
Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma
Polarisation laboration Vågor och optik
Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Laboration 1 Fysik
Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på
Diffraktion och interferens Kapitel 35-36
Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande
Fysik. Laboration 3. Ljusets vågnatur
Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall
LABORATION 2 MIKROSKOPET
LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX (5) Att läsa före lab: LABORATION 2 MIKROSKOPET Synvinkel, vinkelförstoring, luppen och
LABORATION 2 MIKROSKOPET
LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX 1 (6) LABORATION 2 MIKROSKOPET Att läsa i kursboken: sid. 189-194 Förberedelseuppgifter:
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD
EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD UTRUSTNING Utöver utrustningen 1), 2) and 3), behöver du: 4) Lins monterad på en fyrkantig hållare. (MÄRKNING C). 5) Rakblad i en
Handledning laboration 1
: Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen
Kapitel 36, diffraktion
Kapitel 36, diffraktion Diffraktionsbegreppet, en variant av interferens Hitta min värden för enkelspalt med vidden a Intensitet för enkelspalt med vidden a Två spalter med vidd a och separation d Många
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Michelson-interferometern och diffraktionsmönster
Michelson-interferometern och diffraktionsmönster Viktor Jonsson vjons@kth.se 1 Sammanfattning Denna labb går ut på att förstå fenomenen interferens och diffraktion. Efter utförd labb så ska studenten
Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?
1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat
Kikaren. Synvinkel. Kepler och Galileikikare. Vinkelförstoring. Keplerkikaren. Keplerkikaren FAF260. Lars Rippe, Atomfysik/LTH 1
Kikaren Synvinkel Ökar synvinkeln os avlägsna objekt 1 2 Vinkelörstoring Deinition: med optiskt instrument G utan optiskt instrument Kepler oc Galileikikare Avlägsna objekt (t. ex. med kikare): synvinkeln
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom
LABORATION ENELEKTRONSPEKTRA
LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna
Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Tentamen Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt
3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör.
Prövning i Fysik 2 Prövningen i Fy 2 omfattar 1: Skriftligt prov Ett skriftligt prov görs på hela kursen. 2: Laborationer I kursen ingår att laborera och att skriva rapporter. Laborationerna görs en torsdag
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Interferens och difraktion
Interferens och difraktion Lab 2 i Vågrörelselära och Optik Stockholms Universitet, VT14 Kontakt: olga.bylund@fysik.su.se Instruktioner för Lab 2: Tre experiment ingåri lab 2: Difraktionsförsök med laserljus,
BANDGAP 2009-11-17. 1. Inledning
1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive
BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar
BASFYSIK BFN 120 Galileo Galilei, italiensk naturforskare (1564 1642) Laborationsuppgifter med läge, hastighet och acceleration Namn Epost Lärares kommentar Institutionen för teknik och naturvetenskap
Elektromagnetiska vågor (Ljus)
Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer
Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00
FAFF25-2012-03-09 Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
(ii) Beräkna sidoförskjutningen d mellan in- och utgående strålar, uttryckt i vinklarna θ i och tjocklekar t i. (2p)
Tentamen i Vågrörelselära(FK49) Datum: Onsdag, 4 Augusti,, Tid: 9: - 4: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen
Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Måndagen den 21:e maj 2012, kl 14:00 18:00 Fysik del B2 för tekniskt
v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I =
Kap. 33 Elektromagnetiska vågor Den klassiska beskrivningen av EM-vågorna, går tillbaka till mitten av 1800-talet, då Maxwell formulerade samband mellan elektriska och magnetiska fält (Maxwells ekvationer).
5. Elektromagnetiska vågor - interferens
Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor
Målet med undervisningen är att eleverna ska ges förutsättningar att:
Fysik Mål Målet med undervisningen är att eleverna ska ges förutsättningar att: - använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som energi, teknik, miljö
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Mätningar på solcellspanel
Projektlaboration Mätningar på solcellspanel Mätteknik Av Henrik Bergman Laboranter: Henrik Bergman Mauritz Edlund Uppsala 2015 03 22 Inledning Solceller omvandlar energi i form av ljus till en elektrisk
Chalmers tekniska högskola och Oktober 2007 V1, V2. Projektlaborationer
Chalmers tekniska högskola och Oktober 2007 Göteborgs universitet 10 sidor E. Eriksson, J. Bäckström, C. Karlsson, F. Svedberg, C. Tengroth, K. Stiller, H. Riedl och D. Hanstorp V1, V2 Projektlaborationer
Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14
Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tillåtna hjälpmedel: Två st A4-sidor med eget material, på tentamen utdelat datablad, på tentamen utdelade sammanfattningar
Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur.
Diffraktion (Kap. 36) Diffraktion... Fjärilens (Blå Morpho) vingar har en ytstruktur som gör att endast vissa färger (blå) blir synligt under vissa vinklar genom diffraktionseffekter: idag försöker forskare
Ljusets böjning & interferens
Ljusets böjning & interferens Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter 3 Appendix Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen
TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M
TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M 2012-01-13 Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv
FYSA15 Laboration 3: Belysning, färger och spektra
FYSA15 Laboration 3: Belysning, färger och spektra Laborationshandledare: Villhelm Berg Malmborg (ville.berg@design.lth.se) Laborationshandledning senast reviderad av Göran Frank (2015) Laborationen äger
Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för teknik och naturvetenskap Campus Norrköping Igor Zozoulenko Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 Laboration 1: Ljudhastigheten i luft;
Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1
Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition
Fysik TFYA86. Föreläsning 9/11
Fysik TFYA86 Föreläsning 9/11 1 Elektromagnetiska vågor (ljus) University Physics: Kapitel 32, 33, 35, 36 (delar, översiktligt!) Översikt och breddning! FÖ: 9 (ljus) examineras främst genom ljuslabben
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,
Trycket beror på ytan
Inledning Trycket beror på ytan Du har två föremål med samma massa och balanserar dem på varsin handflata. Det ena föremålet har en mycket smalare stödyta än det andra. Förmodligen känns föremålet med
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare
Luft. film n. I 2 Luft
Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Ljusets interferens. Sammanfattning
HERMODS DISTANSGYMNASIUM Naturvetenskapsprogrammet Emilia Dunfelt Fysik 2 2017-05-06 Ljusets interferens Sammanfattning I försöket undersöks ljusets vågegenskaper med hjälp av gitterekvationen. Två olika
Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40
Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Åsa Bengtsson: asa.bengtsson@fysik.lth.se Emma Persson: tfy15epe@student.lu.se Lärandemål I den här laborationen får Du experimentera med
Ljusets polarisation
Ljusets polarisation Viktor Jonsson och Alexander Forsman 1 Sammanfattning Denna labb går ut på att lära sig om, och använda, ljusets polarisation. Efter utförd labb ska studenten kunna sätta upp en enkel
PRÖVNING I NATURKUNSKAP
PRÖVNING I NATURKUNSKAP 2 100 p Prövningsansvarig lärare: Håkan Prahl email: Hakan.M.Prahl@vellinge.se Så går prövningen till: Efter att du anmält dig till prövningen via länken på Sundsgymnasiets hemsida,
Vågrörelselära & Kvantfysik, FK2002 1 december 2011
Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f
Gauss Linsformel (härledning)
α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a
Tenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19
Tenta Elektrisk mätteknik och vågfysik (FFY616) 013-1-19 Tid och lokal: Torsdag 19 december kl. 14:00-18:00 i byggnad V. Examinator: Elsebeth Schröder (tel 031 77 844). Hjälpmedel: Chalmers-godkänd räknare,
Kvantfysik - introduktion
Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm
Tentamen i Optik för F2 (FFY091)
CHALMERS TEKNISKA HÖGSKOLA 2009-03-10 Teknisk Fysik 08.30-12.30 Sal: H Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016
Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med
Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.
Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.
E-II. Diffraktion på grund av ytspänningsvågor på vatten
Q Sida 1 av 6 Diffraktion på grund av ytspänningsvågor på vatten Inledning Hur vågor bildas och utbreder sig på en vätskeyta är ett viktigt och välstuderat fenomen. Den återförande kraften på den oscillerande
Interferens och diffraktion
Laborationsinstruktion Vågrörelselära Interferens och diffraktion VT11 Stockholms Universitet Innehåll Uppgift 1 Diffraktionsförsök med laserljus Uppgift Mäta våglängden med linjal Uppgift 3 Luftens brytningsindex
Pedagogisk dokumentation
Pedagogisk dokumentation 2 april 2013 VARFÖR och lite HUR. Pedagogisk dokumentation är ett arbetsverktyg som kan användas för att följa upp, utvärdera och utveckla verksamheten. Det handlar om att dokumentera
I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.
FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Fysik (TFYA14) Fö 5 1. Fö 5
Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen
Kapitel 35, interferens
Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson
1. 4 + 6 3 = Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0)
1. 4 + 6 3 = Svar: (1/0) 2. Vad är hälften av 1 1 2? Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0) 8 4. Andreas har 4 km till skolan. Hur många minuter
Ekologi Så fungerar naturen
EKOLOGI SÅ FUNGERAR NATUREN Ekologi Så fungerar naturen Är djur till någon nytta för växterna? Motivera. Elevboken, Förstår du?, uppgift 2, sida 115. Utvecklar förmåga Använda kunskaper i biologi för att
Chalmers tekniska högskola och April 2001. Fysik och teknisk fysik Christian Karlsson
Tom sida. Lab-PM börjar på nästa sida. 1 Chalmers tekniska högskola och April 2001 Göteborgs universitet 11 sidor Fysik och teknisk fysik Christian Karlsson O9 Optik för Basåret En CD-spelare innehåller
TNM011 Grafisk teknik Laboration 3 - Färg
TNM011 Grafisk teknik Laboration 3 - Färg Martin Solli marso@itn.liu.se ITN, Linköpings Universitet HT 2006 Introduktion Laborationen handlar om sambandet mellan reflektansspektran, belysningar och den
Konsten att bestämma arean
Konsten att bestämma arean Lektion Ett (Matematiskt område - Talmängder) Vad är viktigast? Introducera tanken om att felet skulle kunna vara viktigare än svaret. Vad väger äpplet? Gissa. Jämför med mätvärdet
Ljusets böjning och interferens
Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska du studera två centrala vågfenomen: interferens och böjning. Du kommer bl.a. att studera hur ljusvågor böjs när de passerar
Pauli gymnasium Komvux Malmö Pauli
PRÖVNINGSANVISNINGAR Prövning i Kurskod Kemi grundkurs GRNKEM2 Verksamhetspoäng 150 Läromedel Prövning Skriftlig del Muntlig del Vi använder för närvarande Spektrum kemi, Folke A Nettelblad, Christer Ekdahl,
LJ-Teknik Bildskärpa
Bildskärpa - Skärpedjup och fokus - Egen kontroll och fokusjustering - Extern kalibrering Bildskärpa, skärpedjup och fokus Brännpunkt och fokus Medan brännpunkt är en entydig term inom optiken, kan fokus
ARKITEKTPROVET 2013 DAG 1. 1: LINJE & VECK [ENKELHET, UNDERSÖKNING] [1H] 9.15-10.15
ARKITEKTPROVET 2013 DAG 1. 1: LINJE & VECK [ENKELHET, UNDERSÖKNING] [1H] 9.15-10.15 Översikt: Den första uppgiften är en undersökning av linje, kant och yta. I den skall du försöka skapa något intressant
Ljusets diffraktion (180308)
Ljusets diffraktion (180308) Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande Diffraktionsexperiment med laserljus... 3 Experiment med gitterspektroskop...
TNM059 Grafisk teknik Laboration 4 - Färg
TNM059 Grafisk teknik Laboration 4 - Färg Martin Solli Martin.Solli@itn.liu.se ITN, Linköpings Universitet Introduktion Laborationen handlar om sambandet mellan reflektansspektran, belysningar och den
1.1 Mätning av permittiviteten i vakuum med en skivkondensator
PERMITTIVITET Inledning Låt oss betrakta en skivkondensator som består av två parallella metalskivor. Då en laddad partikel förflyttas från den ena till den andra skivan får skivorna laddningen +Q och
Varje del tar c:a 80 min. Totalt 4 lektioner eller 160 minuter.
Lärarhandledning Моdul 2: Färger Färger fångar vår uppmärksamhet. Precis som marknadsföringsspecialister använder sig av attraktiva, färgsprakande reklamannonser för att fånga vår uppmärksamhet för en
OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.
Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare
Ljusets diffraktion (170310)
Ljusets diffraktion (170310) Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande Diffraktionsexperiment med laserljus... 3 Experiment med gitterspektroskop...
Går det att göra vitt ljus koherent?
Går det att göra vitt ljus koherent? Marcin Swillo och Gunnar Björk Institutionen för Tillämpad Fysik AlbaNova Universitetscentrum, KTH 106 91 Stockholm I Fysikaktuellt nummer 4, 2011 skrev en av oss en
Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00
FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Viktiga moment i kursplanen
Viktiga moment i kursplanen En process där eleverna medverkar aktivt genom att tillsammans bygga, experimentera, undersöka, ställa frågor och kommunicera ger en mängd fördelar. Flera exempel på aktiviteter
Tillämpningar av fysik och dynamik i biologiska system 2007-11-21, kl. 09:00-15:00
Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Bo Tannfors Tentamen i elektronik: Hjälpmedel: Tillämpningar av fysik och dynamik i biologiska system 2007--2, kl. 09:00-5:00 Reglerteknikformelsamling,
LÄRARHANDLEDNING Samla på sinnen
LÄRARHANDLEDNING Samla på sinnen Bakgrund MegaMind är Tekniska museets nya science center som handlar om hur en bra idé blir till och hur man kan ta den vidare till verklighet från sinnesintryck till innovativt
Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 18 DECEMBER 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
ett uttryck för en våg som beskrivs av Jonesvektorn: 2
Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00
FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)
Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos
Repetition Ljus - Fy2!!
Repetition Ljus - Fy2 Egenskaper ör : Ljus är inte en mekanisk vågrörelse. Den tar sig ram utan problem även i vakuum och behöver alltså inget medium. Exakt vilken typ av vågrörelse är återkommer vi till