Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
|
|
- Kurt Lundberg
- för 6 år sedan
- Visningar:
Transkript
1 Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009
2 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential. Vi kommer först att titta på teorin för ett sådant system och sedan att konstruera ett program i MATLAB som simulerar Bose-Einsteinkondensationen. Ett Bose- Einsteinkondensat är intressant eftersom man har ett makroskopiskt antal partiklar som befinner sig i ett enda kvantmekaniskt tillstånd. Man har tänkt sig att använda sådana system i t.ex. framtidens kvantdatorer. Teori För partiklar med massan m som rör sig i en tredimensionell harmoniskoscillatorpotential har vi energiegenvärdesekvationen ( ) h m + 1 mω (x + y + z ) Φ = EΦ (1) (jfr Bengtsson om statistisk fysik s 10). Som visas på föreläsningarna är denna differentialekvation separabel, d v s vi kan ansätta en lösning av formen Φ(x, y, z) = X(x)Y(y)Z(z) och då erhålla tre differentialekvationer, en i vardera cartesiska koordinaten: Den totala energin ges av h d X m dx + 1 mω x X = E (x) X () h d Y m dy + 1 mω y Y = E (y) Y (3) h d Z m dz + 1 mω z Z = E (z) Z (4) E = E (x) + E (y) + E (z). (5) Från lösningarna till den endimensionella harmoniska oscillatorn får vi då energiegenvärdena ( E = n (x) + 1 = ) ( hω + ( n (x) + n (y) + n (z) + 3 n (y) + 1 ) ( hω + n (z) + 1 ) hω ) hω, (6) 1
3 för n (x), n (y), n (z) = 0, 1,, 3... (jfr Bengtsson om statistisk fysik s 116-7). Om vi inför huvudkvanttalet n = n (x) + n (y) + n (z) kan vi uttrycka energinivåerna ( E n = n + 3 ) hω, n = 0, 1,, 3... (7) Urartningen för givet n kan visas vara G n = (n + 1)(n + )/. Vi lägger nu nollnivån för energi i grundtillståndet och får E n = n hω, n = 0, 1,, 3... (8) Om partiklarna i den harmoniska oscillatorpotentialen är bosoner ges fördelningen av antalet partiklar i en given nivå N n vid en viss temperatur av Bose-Einsteinfördelningen (jfr Bengtsson om statistisk fysik s 17) och vi har G N n = n (n + 1)(n + )/ e β(en µ) = e β(n hω µ) (9) där β som vanligt står för 1/kT och normeringsfunktionen µ, även kallad den kemiska potentialen, bestäms av normeringsvillkoret (n + 1)(n + )/ N n = n=0 n=0 e β(n hω µ) = N tot (10) för det totala antalet partiklar, N tot. Vi kan även definiera en funktion S(µ) (n + 1)(n + )/ n=0 e β(n hω µ) N tot. (11) Kemiska potentialen ges då av lösningen till ekvationen S(µ) = 0. Eftersom antalet partiklar för varje energinivå (även den motsvarande n = 0 och E = 0) måste vara positivt, måste den kemiska potentialen vara negativ. Vi kommer så småningom att lösa denna ekvation numeriskt. När väl µ är känt kan vi sedan beräkna antalet partiklar N n för de olika energinivåerna och därmed även den inre energin E tot = n hω(n + 1)(n + )/ N n E n = n=0 n=0 e β(n hω µ) (1) och värmekapaciteten C = de tot dt. (13) Bose-Einsteinkondensationen kännetecknas av att under en viss kritisk temperatur T c, Bose-Einsteintemperaturen, kommer väsentligen alla partiklar att befinna sig i samma tillstånd, grundtillståndet. Övergången vid den kritiska temperaturen visar typiska egenskaper för en fasövergång, till exempel ändrar sig värmekapaciteten drastiskt vid övergången.
4 Innan vi gör de numeriska beräkningarna skall vi göra en uppskattning av Bose-Einsteintemperaturen. Vi studerar därför normeringsekvationen ovan. Vi har med n = E n / hω: (E n / hω + 1)(E n / hω + )/ n=0 e β(en µ) = N tot. (14) Om n 1, dvs n hω är det en god approximation att stryka 1:an och :an i parenteserna ovan. Detta innebär dock att grundtillståndet med n = 0 får den statistiska vikten 0 vilket borde orsaka problem då T 0 och partiklarna tvingas ner i grundtillståndet. Vi behandlar därför grundtillståndet separat och skriver N ( hω) n=1 Låter vi nu summan övergå till en integral har vi N ( hω) n=1 En e β(en µ) N ( hω) 3 0 E n e β(e n µ) = N tot. (15) E e β(e µ) de = N tot (16) där den extra faktorn 1/ hω i andra steget kommer från variabelbytet från n till E, 1 = n = E n / hω. (Jämför gärna med Bengtsson om statistisk fysik kap 37, men notera skillnaden i tillståndstäthetens energiberoende.) Efter ytterligare en variabelsubstitution till x = E/kT får vi N Vi inför en beteckning för integralen ovan och har ( ) kt 3 x dx hω 0 e x βµ. (17) ( µ I = T) 0 N x dx e x kt µ (18) ( ) kt 3 ( µ I = N tot. (19) hω T) Så länge temperaturen är så hög att vi kan bortse från partiklarna i grundtillsåndet (d v s sätta N 0 = 0 i ekvationen ovan) måste integralens värde måste ändras som T 3 eftersom vi har ett konstant antal partiklar. Detta innebär att µ(t) måste ändras på ett sådant sätt att I T 3. Vi vill nu studera likheten för låga temperaturer. Vi kan få integralens värde att öka genom att låta den kemiska potentialen gå mot noll (snabbare än T går mot noll). Emellertid visar det sig att integralens värde för µ = 0 är ändligt, I(0) =, 404. Den temperatur, den kritiska, då det hela bryter samman och 3
5 partiklar nödvändigtvis måste populera grundtillståndet kan approximeras med ( ) 3 1 kt c I(0) = N tot. (0) hω eller T c = För temperaturer under den kritiska (då µ = 0) får vi eller N vilket ger oss antalet partiklar i grundtillståndet: ( ) 1/3 Ntot hω, 404 k. (1) ( ) kt 3 I(0) = N tot () hω ( ) T 3 N 0 + N tot = N tot (3) T c ( ) ) T 3 N 0 = N tot (1. (4) T c Som väntat ser vi att för låga temperaturer kommer mer eller mindre alla partiklar att ligga i grundtillståndet. Föreberedelseuppgift: Bestäm E tot på samma sätt som N tot i ekvation (3). Sätt upp en integral som approximerar den inre energin, E tot (T) på samma sätt som vi approximerade nomreringssumman ovan. Hur kommer den att bära sig åt som funktion av temperaturen vid låga temperaturer, d v s vilken potens av temperaturen har vi. Vad medför detta för värmekapacitetens temperaturberoende vid låga temperaturer? 4
6 Simulering i Java Som alltid i programmering finns det ett otal olika sätt att lösa samma problem på. Denna handledning kommer inte att presentera ett färdigt recept utan endast att ge vägledning. Vi ska beräkna antalet partiklar i grundtillståndet, N 0, den inre energin, E tot och dess derivata, C. För att göra detta måste vi först ta reda på den kemiska potentialen µ(t). Det ska vi göra genom att numeriskt söka nollställen till ekvation (11). Detta vill vi göra för ett lämpligt temperaturintervall som naturligtvis ska inkludera Bose-Einsteintemperaturen. Vi har beräknat T c approximativt i ekvation (1). Denna ekvation innehåller dock de fundamentala naturkonstanterna h och k som har mycket små numeriska värden i SI enheter. Beräkningar med mycket små eller stora tal kan ibland orsaka problem med numerisk precision och dessutom har vi ingen anledning att dra runt en massa konstanter i beräkningarna. Vi väljer därför enheter så att h = k = 1. Vi har heller inget skäl att vara intresserade av någon speciell grundfrekvens så vi låter även ω = 1. Om vi har t ex partiklar får vi då från ekvation (1) ( ) /3 T c = = 0, 3. (5), 404 Med en kritisk temperatur kring 0 är det lämpligt att låta tempraturen i labben variera från 1 till 100. Det ger dessutom en hyfsad temperaturupplösning att låta T ta steg om 1. Vi vill alltså lösa för T = 1,,..., 100. S(µ) = (n + 1)(n + )/ N n=0 e (n µ)/t tot = 0. (6) För att lösa ekvation (6) ska ni skriva två konkreta klasser som implementerar två givna interface. Skapa först en klass som representerar funktionen S(µ) som ska implementera Function. Därefter skapar ni en klass för en lösare av ekvationen S(µ) = 0 som implementerar Solver. Solver har medlemsfunktionen solve som tar tre argument, en referens till ett Function-objekt, samt två flyttal som anger inom vilket intervall en eventuell lösning söks. Kan inte medlemsfunktionen hitta en lösning ska ett UnableToFindSolutionException-exception kastas. För fysikaliska värden på µ (µ < 0) finns det bara ett nollställe till S(µ). Därför är intervallhalvering en enkel, men effektiv metod att använda för att hitta ett nollställe. En algoritm som använder intervallhantering kan i pseudokod se ut som följande. 5
7 u = f(x1) v = f(x) e = x - x1 if sign(u) = sign(v) then exit with error loop start e = 0.5 * e c = x1 + e w = f(c) if w < error then exit with c as solution if sign(w) = sign(u) then x1 = c u = w else x = c v = w end if loop end Variabeln error bestämmer precisionen för lösaren. I klassen BoseEinstein finns enmain-funktion där ni ska skriva kod som gör följande: Stega temperaturen från 1 till 100 med lämplig steglängd (till exempel 1.0). För varje värde påtemperaturen ska ni hitta nollstället till S(µ) med hjälp av er implementering avsolver. För de givna värdena för konstanterna ska intervallet [-1000, ] vara tillräckligt. Med en given temperatur och tillhörande värde på µ ska ni därefter beräkna antalet partiklar i grundtillståndet, den totala energin, samt värmekapaciteten. I slutändan ska ni ha data för µ, N 0, E tot, och C som funktioner av temperaturen T. Användgnuplot för att plotta resultaten. 6
8 Uppgifter 1. Vad blir Bose-Einsteintemperaturen i simuleringen? Hur stämmer den med det approximerade värdet i ekvation (5)?. Vad är det förväntade teoretiska högtemperaturuppförandet för den inre energin? Använd metoden med att räkna frihetsgrader. Verkar det stämma? 3. Vad blir motsvarande för värmekapaciteten? 4. Verkar approximation av E tot (T) för låga T som du gjorde som förberedelseuppgift stämma i simuleringen? Anpassa en kurva i gnuplot för att se hur det stämmer. Kolla också värmekapaciteten. 7
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
R AKNE OVNING VECKA 2 David Heintz, 13 november 2002
RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Kvantfysik SI1151 för F3 Tisdag kl
TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,
Envariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Två gränsfall en fallstudie
19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion
Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Numerisk lösning till den tidsberoende Schrödingerekvationen.
Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall
Approximation av funktioner
Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Studieanvisningar i statistisk fysik (SI1161) för F3
Studieanvisningar i statistisk fysik (SI1161) för F3 Olle Edholm September 15, 2010 1 Introduktion Denna studieanvisning är avsedd att användas tillsammans med boken och exempelsamlingen. Den är avsedd
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Labb 3: Ekvationslösning med Matlab (v2)
Envariabelanalys Labb 3: Ekvationslösning 1/13 Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys 2007-03-05 Björn Andersson (IT-06), bjoa@kth.se Johannes Nordkvist (IT-06), nordkv@kth.se Det finns
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Inlämningsuppgift 4 NUM131
Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
BEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Atom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Kvantmekanik II (FK5012), 7,5 hp
Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.
Dataprojekt. Nanovetenskapliga tankeverktyg. January 18, 2008
Dataprojekt. Nanovetenskapliga tankeverktyg. January 18, 2008 Dataprojekt 1: Fourierserier Två av fysikens mest centrala ekvationer är vågekvationen och värmeledningsekvationen. Båda dessa ekvationer är
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
k 1 B k 2 C ges av dx 1 /dt = k 1 x 1 x 1 (0) = 100 dx 2 /dt = k 1 x 1 k 2 x 2 x 2 (0) = 0 dx 3 /dt = k 2 x 2 x 3 (0) = 0
Radioaktivt sönderfall 2D124 numfcl, Fö 5 Ekvationerna som beskriver hur ett radioaktivt ämne A sönderfaller till ämnet B som i sin tur sönderfaller till C ges av dx 1 /dt = k 1 x 1 x 1 () = 1 dx 2 /dt
Envariabelanalys 5B Matlablaboration
Mariana Dalarsson, ME & Johan Svenonius, IT Envariabelanalys 5B47 - Matlablaboration 7-- Kurs: 5B47 Handledare: Karim Daho Uppgift Situationen kan illustreras med följande figur: Följande krafter verkar
R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002
RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions
MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN SF66 Tillämpad envariabelanalys med numeriska metoder för CFATE den januari 0 kl 09.00-.00. Hur många gånger antar funktionen f) = ) värdet när varierar i intervallet 9? LÖSNING:
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
MATLAB Laboration problem med lokala extremvärden
MATLAB Laboration problem med lokala extremvärden Sonja Hiltunen, sohnya@gmail.com Sanna Eskelinen, eskelinen.sanna@gmail.com Handledare: Karim Daho Flervariabelanalys 5B1148 Innehållsförteckning Problem
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Kvantmekanik - Gillis Carlsson
Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,
Resträkning och ekvationer
64 Resträkning och ekvationer Torsten Ekedahl Stockholms Universitet Beskrivning av uppgiften. Specialarbetet består i att sätta sig in i hur man räknar med rester vid division med primtal, hur man löser
IV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00
EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Instuderingsfrågor, Griffiths kapitel 4 7
Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor
Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Rapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Numeriska metoder, grundkurs II. Dagens program. Gyllenesnittminimering, exempel Gyllenesnittetminimering. Övningsgrupp 1
Numeriska metoder, grundkurs II Övning 5 för I Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum :006, Roslagstullsbacken 5 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/d0/numi07
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 1 Felanalys Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur : 1
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Partiella differentialekvationer av första ordningen
Partiella differentialekvationer av första ordningen Kjell Holmåker 23 februari 2005 En kvasilinjär partiell differentialekvation av första ordningen är av formen P (x, y, u)u x + Q(x, y, u)u y = R(x,
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga
Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer
2 mars 2017 Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer Syftet med denna matlab-övning är att studera differentialekvationer och introducera hur man använder
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Numerisk Analys, MMG410. Lecture 13. 1/58
Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Fysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?
Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och