LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
|
|
- Johannes Nilsson
- för 8 år sedan
- Visningar:
Transkript
1 TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi studerar ett exempel av första ordningen och löser sedan ett system av differentialekvationer. 1.1 Mål Målet med denna laboration är att du skall få övning i att använda Eulers metod och Runge-Kuttas klassiska metod. få viss insikt i vad stabilitet innebär. få övning i att hantera system av differentialekvationer. få insikt i hur man praktiskt kan analysera trunkeringsfelets beroende av steglängden. få övning i att använda en av MATLAB:s ode-lösare för att lösa ett praktiskt problem. 2 Eulers metod och Runge-Kuttas metod Vi skall börja med att studera ett första ordningens begynnelsevärdesproblem. Vi skall använda Eulers metod (Euler framåt) och Runge-Kuttas klassiska metod för att lösa ett problem på formen y = f(x,y), x x 0, y(x 0 ) = y 0. Vi låter vårt testproblem vara: y = 5y +2.5 = f(x,y), 0 x x n, y(0) = 1. ( ) exakt lösning: y = e 5x +1 2 Följande enkla funktion (finns att kopiera på kurshemsidan) kan användas för att implementera Eulers metod. function y=myeuler(f,x0,xn,y0,h) y=y0; x=x0; plot(x0,y0,. ) hold on while x < xn-h/2 y=y+h*f(x,y); x=x+h; plot(x,y,. ) disp([x y ]) end hold off Uppgift 2.1 Skapa funktioner Skapa myeuler.m i din hemkatalog. Modifiera också programmet till myrungekutta.m som använder Runge-Kuttas metod och skapa en funktion som beräknar f(x, y) för testproblemet. Det måste vara en funktion av två variabler även om inte båda används. En anynom funktion kan skapas i kommandofönstret: f=@(x,y) -5*y+2.5 1
2 2.1 Stabilitet Eulers och Runge-Kuttas metoder är exempel på explicita metoder. Dessa kräver i regel relativt korta steglängder för att kunna fungera. Om steglängden, h, är större än en viss kritisk gräns (som är olika för olika differentialekvationer) så avlägsnar sig den numeriska approximationen alltmer från den exakta lösningen då n växer. Vi säger då att metoden är instabil för detta h. I motsatt fall säges metoden vara stabil. Uppgift 2.2 Datorexperiment Undersök vad som inträffar i de två metoderna för h = 0.1, h = 0.45 och h = 0.6. För vilka steglängder är respektive metod stabil? h Euler Runge-Kutta Sätt xn = Numerisk simulering av en regulator Vi skall nu studera en numerisk simulering av en regulator för en vattentank. En tank är fylld med vatten enligt figuren nedan. Vid tidpunkt t är vattennivån x(t). Vattentillförseln y(t) styrs av en regulator. Dess egenskaper beror på förstärkningskoefficienterna K P och K I. Målet för regulatorn är att hålla x(t) så nära noll som möjligt. regulator y(t) + x(t) 0 tank Figur 1: Illustration av vattentanken med regulator 2
3 Vi behöver också införa hjälpvariabeln z(t) = t 0 x(s) ds Regulatorns funktion kan då beskrivas med ett system av ordinära differentialekvationer 1 x (t) = x(t)+y(t) 10 3, y (t) = K P x(t) y(t) K I z(t)+10 3, t > 0, z (t) = x(t). Vi använder begynnelsevillkoret x(0) = 1, y(0) = 0.001, z(0) = 0. Förstärkningskoefficienterna är K P = 0.1 och K I = Om vi inför vektorn v = v(t) enligt: x(t) v(t) = y(t) kan systemet skrivas som v = f(t,v), där f(t,v) = Av +b. z(t) Vi har A = K P 1 K I, b = 10 3 och v(0) = Uppgift 3.1 Skapa funktionsfil Skapa en funktionsfil odefun.m som beräknar f(t,v). (Funktion att utgå från finns på kurshemsidan.) 3.1 Experiment med Eulers metod Uppgift 3.2 Stabilitet Använd myeuler för att approximera lösningen fram till t n = 500 och studera figuren. Anrop av myeuler sker med: v=myeuler(@odefun, t0, tn, v0, h) (v0 är startvektorn, som måste vara en kolumnvektor.) Använd steglängderna h = 1.5, 2.1, 2.24 och Vilken var den största steglängd, där vi hade stabilitet? Uppgift 3.3 Noggrannhet Använd Eulers metod för att approximera lösningen fram till t n = 100. Använd format short e. Trunkeringsfelet i approximationen med steglängden h kan uppskattas som skillnaden mellan approximationerna med steglängderna 2h och h. Börja med steglängden h = 0.2 och halvera den tills trunkeringsfelet i x(100) är högst Vid vilken steglängd uppfylldes noggrannhetskravet? Hur många steg gjordes? Ange värdet av x(100). Ange värdet av trunkeringsfelet i x(100). 1 För en härledning hänvisas till Torkel Glad och Lennart Ljung, Reglerteknik, Studentlitteratur,
4 3.2 Experiment med MATLAB:s ode23 Vi skall nu jämföra Eulerlösningen för den minsta steglängden ovan med lösningen som fås med MATLAB:s ode23 och standardtolerans. Standardtoleranser innebär att vi får ett absolut fel på ca I ode23 uppskattas lokala felet i varje steg. Utifrån det bestäms en lämplig steglängd, som används i nästa steg. Detta innebär att steglängden rättar sig efter funktionens utseende och totala antalet steg kan hållas nere. För att anropa ode23 skriver man: [t,v]=ode23(@odefun,[t0 tn],v0) eller bara ode23(@odefun,[t0 tn],v0) så plottas lösningen automatiskt. Uppgift 3.4 Experiment med ode23 Använd ode23 för att lösa differentialekvationen fram till t n = 100. Använd format long e Rita först graferna, genom att anropa ode23 utan utparametrar. Beräkningspunkterna blir markerade, så det syns att variabel steglängd används. Vilken färg har x(t)-kurvan? Bestäm därefter lösningen genom att anropa ode23 med utparametrar. Ange värdet av x(100). Jämför med den bästa lösningen med Eulers metod. Blev det någon större skillnad mellan lösningarna? Hur många steg användes (fås med size(t))? Jämför med Euler. Vad kan sägas om effektiviteten? Uppgift 3.5 Variation av regulatorns egenskaper. Variera K I genom att använda ytterligare tre värden, K I = 0.01, 0.05, Använd ode23 för att lösa differentialekvationen fram till t n = 100 för alla tre fallen. Studera enbart graferna. För vilket av de tre K I -värdena i denna deluppgift fungerar regulatorn bäst? Vad händer när K I ökar? Ange det/de K I som inte ger en fungerande regulator. För vilket K I togs flest steg? Studera lösningskurvan med K I = 0.125, då t går från 0 till 40. Var används korta steglängder? 4
5 4 Undersökning av trunkeringsfelets beroende av steglängden Vi återvänder till fallet K P = 0.1, K I = Lokalt trunkeringsfel Om vi använder Eulers metod och gör ett steg med steglängd 2h erhålls en approximation, α, till värdet x(2h). Gör vi ett nytt steg, nu med steglängd h, erhålls en approximation, β, till värdet x(h). Antag att det lokala felet är proportionellt mot h p. Då fås α x(2h) C(2h) p, β x(h) Ch p. p kan enkelt uppskattas med hjälp av α, β, x(2h) och x(h) om vi dividerar sambanden med varandra. Vi känner inte värdena x(0.5) och x(0.25). Vi vet dock att Runge-Kuttas klassiska metod är mycket noggrannare än Eulers metod. Därför kan vi approximera det exakta värdet x(0.5) med värdet som vi får med Runge-Kuttas metod. På samma sätt för x(0.25). Uppgift 4.1 Bestäm p för lokala felet Använd format short e och kör programmet med Eulers metod, h = 0.5 och t n = 0.5. Ta sedan h = 0.25 och t n = Vad blir approximationerna α, respektive β? α = β = Approximera nu x(0.5) med Runge-Kuttas metod med steglängd h = 0.5. Approximera x(0.25) med Runge-Kuttas metod med steglängd h = Vad blir x(0.5) och x(0.25)? x(0.5) x(0.25) Uppskatta p. 4.2 Globalt trunkeringsfel Låt 4h vara en steglängd. Låt oss beräkna en approximation α till x(100) med någon numerisk metod. Sedan tas steglängderna 2h och h, och beräknas approximationer β respektive γ till x(100). Antag att det globala felet är proportionellt mot h p. Då fås ekvationssystemet Uppgift 4.2 Ange uttryck α x(100)+c(4h) p, β x(100)+c(2h) p, γ x(100)+ch p. Ge ett uttryck för att bestämma p med hjälp av α, β och γ. (Se t.ex. Ex.saml. 9.26) 5
6 Uppgift 4.3 Bestäm noggrannhetsordningen för Eulers metod (a) Kör programmet med Eulers metod och h = 2, t n = 100. Ta sedan h = 1 och h = 0.5. Vilka värden får approximationerna α, β och γ? α = β = γ = (b) Uppskatta p (som är noggrannhetsordningen för Eulers metod). (c) Stämmer resultatet överens med svaret i Uppgift 4.1? Motivera ditt svar! 5 Frivillig tillämpning: Glödlampan Följande ekvation utgör en modell för temperaturutvecklingen i en glödlampa (y(t) betecknar temperatur i lämplig skala och t är tiden), dy dt = q (y4 1), y(0) = 1 I modellen antas att glödtråden värms enligt Ohms lag och kyls av strålning enligt Boltzmanns T 4 -lag. Strömmen slås på vid t = 0 och slås av vid t = så { , t q = 0, t > Uppgift 5.1 Beräkning av temperaturen Lös begynnelsevärdesproblemet med matlab-rutinen ode23 (skapa en fil med funktionen för högerledet) och plotta y(t) så man ser hur tråden svalnar. Låt alltså tiden gå en liten stund då lampan är släckt. Ta ut din bild på skrivaren eller gör en skiss. Uppgift 5.2 Steglängdsval Rutinen ode23 använder ju automatisk steglängdskontroll. Kör ode23 utan utparametrar och studera steglängdernas variation. Kommentera. Uppgift 5.3 Studera grafen När man släcker en bilstrålkastare ser man hur glödtråden svalnar och svartnar medan uppvärmning tycks gå mycket fortare. Verifieras detta fenomen av modellen? 6
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 4. Differentialekvationer Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
k 1 B k 2 C ges av dx 1 /dt = k 1 x 1 x 1 (0) = 100 dx 2 /dt = k 1 x 1 k 2 x 2 x 2 (0) = 0 dx 3 /dt = k 2 x 2 x 3 (0) = 0
Radioaktivt sönderfall 2D124 numfcl, Fö 5 Ekvationerna som beskriver hur ett radioaktivt ämne A sönderfaller till ämnet B som i sin tur sönderfaller till C ges av dx 1 /dt = k 1 x 1 x 1 () = 1 dx 2 /dt
Laboration 1, M0039M, VT16
Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Ordinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer
2 mars 2017 Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer Syftet med denna matlab-övning är att studera differentialekvationer och introducera hur man använder
0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
4 Numerisk integration och av differentialekvationer
Matematik med Matlab M1 och TD1 1999/2000 sid. 27 av 47 4 Numerisk integration och av differentialekvationer Redovisning redovisas som tidigare med en utdatafil skapad med diary 4.1 Numerisk av ekvationer.
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem
Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Laboration 2 Ordinära differentialekvationer
Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Föreläsning 8, Numme i2,
SF545, Numeriska Metoder, I, HT0, Ninni Carlsund Levin, Föreläsning 8 Föreläsning 8, Numme i, 0 GKN Kap - Differentialekvationer GNM kap 7-7), S Ch Dagens termer Riktningsfält Standardform Begynnelsevärdesproblem
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Ordinära differentialekvationer (ODE) 1 1
TMV151/TMV181 Matematisk analys i en variabel M/TD 2009 Ordinära differentialekvationer (ODE) 1 1 I förra datorövningen löste vi begynnelsvärdesproblem av formen u (x) = f(x), x [0, b] (b > 0) u(0) = u
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
2D1250 Tillämpade numeriska metoder II
1 lof Runborg NADA 2 april 2002 2D1250 Tillämpade numeriska metoder II A LABRATIN 5 rdinära differentialekvationer I den här laborationen ska ni experimentera med olika numeriska metoder för ordinära differentialekvationer.
DN1212 för M: Projektrapport. Krimskramsbollen. av Ninni Carlsund
Författare: Ninni Carlsund DN1212-projekt: Krimskramsbollen Kursledare: Ninni Carlsund DN1212 för M: Projektrapport Krimskramsbollen av Ninni Carlsund. 2010-04-29 1 Författare: Ninni Carlsund DN1212-projekt:
Laboration 2 M0039M, VT2016
Laboration 2 M0039M, VT2016 Ove Edlund, Staffan Lundberg, TVM 24 februari 2016 1 Teoridel 1.1 Serielösningar till differentialekvationer Den grundläggande idén (se t.ex. utdelat material, Lektion 18) är
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
DN1212 Numeriska Metoder och Grundläggande Programmering DN1214 Numeriska Metoder för S Lördag , kl 9-12
DN Numeriska Metoder och Grundläggande Programmering DN Numeriska Metoder för S Lördag 007--7, kl 9- Skrivtid tim Maximal poäng 5 + bonuspoäng från årets laborationer (max p) Betygsgänser: för betyg D:
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Matlab övningsuppgifter
CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till
) + γy = 0, y(0) = 1,
Institutionen för Matematik, KTH Tentamen del Numeriska metoder SF545 8.00-.00 / 04 Inga hjälpmedel är tillåtna (ej heller miniräknare). Råd för att undvika poängavdrag: Skriv lösningar med fullständiga
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 5 GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 1 Felanalys Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur : 1
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
(a) Skriv en matlabsekvens som genererar en liknande figur som den ovan.
Matematik Chalmers tekniska högskola 2014-08-27 kl. 08:30-12:30 Tentamen MVE355, Programmering och numeriska beräkningar med matlab. Ansvarig: Katarina Blom, tel 772 10 97. Plats: L Inga hjälpmedel. Kalkylator
KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Linjärisering, Jacobimatris och Newtons metod.
Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system
TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER
TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER Beskrivning och mål. Den här laborationen syftar till att ge en grundläggande förståelse
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Linjärisering och Newtons metod
CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN SF66 Tillämpad envariabelanalys med numeriska metoder för CFATE den januari 0 kl 09.00-.00. Hur många gånger antar funktionen f) = ) värdet när varierar i intervallet 9? LÖSNING:
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Envariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
SF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
BEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
D 1 u(x, y) = e x (1 + x + y 2 ), D 2 u(x, y) = 2ye x + 1, (x, y) R 2.
Differentialekvationer I Modellsvar till räkneövning 4 De frivilliga uppgifterna U1 och U2 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Sök en potentialfunktion
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Numerisk lösning till den tidsberoende Schrödingerekvationen.
Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
UPG6 Miniprojekt 3: Kastparabler, projektiler, och raketer
UPG6 Miniprojekt 3: Kastparabler, projektiler, och raketer Många fysikaliska fenomen inom natur och tillämpningar kan beskrivas och modelleras genom ordinära differentialekvationer (ODE). Det är endast
DN1240, numo08 Stefan Knutas, Fredrik Båberg, B.10: Nalle-Maja gungar
DN140, numo08 Stefan Knutas, 8811-0056 Fredrik Båberg, 88031-0511 3B.10: Nalle-Maja gungar Sammanfattning Detta arbete är skrivet som en del av Numeriska Metoder, Grundkurs. Uppgiften vi valde gick ut
Newtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION 6 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra veckan såg vi på intervallhalveringsmetoden. Den är pålitlig men
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Numeriska metoder, grundkurs II. Dagens program. Gyllenesnittminimering, exempel Gyllenesnittetminimering. Övningsgrupp 1
Numeriska metoder, grundkurs II Övning 5 för I Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum :006, Roslagstullsbacken 5 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/d0/numi07
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Laboration 1. 1 Matlab-repetition. 2 Störningsräkning 1. 3 Störningsräkning 2
Laboration 1 Hela labben måste vara redovisad och godkänd senast 19 november för att generera bonuspoäng till tentan. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat
ODE av andra ordningen, och system av ODE
ODE av andra ordningen, och system av ODE Exempel på di erentialekvation av andra ordningen (innehåller andra derivata) Pendel beskrives av Newtons andra lag: Kraft = massa Acceleration Acceleration =
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Matematisk analys, laboration I. Per Jönsson Teknik och Samhälle, Malmö Högskola
Matematisk analys, laboration I Per Jönsson Teknik och Samhälle, Malmö Högskola Viktig information om laborationerna Ianalyskurseningårtreobligatoriskalaborationer.UnderlaborationanvändsMatlab/GNU Octave