Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem
|
|
- Marianne Danielsson
- för 8 år sedan
- Visningar:
Transkript
1 Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del : Ordinära differentialekvationer. Skriv följande ekvationer på standardform för begynnelsevärdesproblem (a Duffings ekvation: (b Blasius ekvation: (c Van der Pols ekvation: y + δy + σ(y 3 y = γsinωt f + f f = 0 y y ( y y = 0.. Sant eller falskt: Om en lösning y till ett begynnelsevärdesproblem för en ODE uppfyller y(t + när t +, då är ODEn instabil. 3. Klassificera följande ODEer som stabil, asymptotiskt stabil eller instabil med avseende på begynnelsevärden. (a y y = t, (b y y = t, (c y + y = t ; (d y = t. 4. Sant eller falskt: kan en numerisk metod vara instabil när den tillämpas på en ODE som är stabil med avseende på begynnelsevillkor? 5. Förklara vad som menas med följande termer som används i samband med numerisk lösning av initialvärdesproblem för ordinära differentialekvationer: (a implicita och explicita metoder; (b trunkeringsfel; (c noggrannhetsordning. 6. Implicit numeriska metoder för lösning av begynnelsevärdesproblem för ordinära differentialekvationer har normalt ett mycket större utbud av tidssteg för vilka metoden är stabil jämfört med explicita metoder. Varför används inte alltid implicita metoder? 7. Begynnelsevärdesproblemet för den ordinära differentialekvationen y = f (t, y kan lösas numeriskt med hjälp av så kallade α schemat: där 0 α. y k+ = y k + t αf (t k+, y k+ + ( αf (t k, y k ], (a Vilka metoder erhålls när man väljer α = 0,, respektive /? (b Bestäm noggrannhetsordningen för schemat för alla 0 α. (c För alla 0 α, bestäm stabilitetsvillkoret på den negativa reella axeln, d.v.s. villkoret för stabilitet för schemat när det appliceras på ekvationen y = λy där λ < 0. (d Vilka förändringar måste göras för att omvandla α-schemat till Heuns metod?
2 8. Begynnelsevärdesproblemet för den ordinära differentialekvationen y = f (t, y kan lösas numeriskt med hjälp av schemat: (a Är metoden explicit eller implicit? y k+ = y k + t 3f (tk, y k f (t k, y k ]. (b Härled metodens noggrannhetsordning. 9. Vad menas med ett styvt system av ordinära differentialekvationer. Varför rekommenderas implicita metoder ofta för numerisk lösning av dessa system?
3 Lösningar. (a Låt = y, och skriv problemet som systemet ( ( y = γsinωt δ σ(y 3 y (b Låt g = f, h = g (= f och få f g g = h h f h (c Genom att sätta = y erhålls systemet ( ( y = ( y + y. Falskt. Villkoret för stabilitet är att lösningskurvorna för olika begynnelsevillkor inte divergerar när t En skalär, linjär ODE skriven på formen y = λy + f (t är stabil när R(λ 0, asymptotisk stabil när R(λ < 0 och ostabil annars (alltså om R(λ > 0. Således är (a och (b instabila, (c är asymptotiskt stabil och (d är stabil. 4. Sant per definition. 5. (a I en implicit metod innehåller approximationen av tillståndet vid nästa tiddsteg y k+ funktionsevalueringar där y k+ förekommer som argument (eller del därav. I explicita metoder används endast funktionsevalueringar som beror på nuvarande samt tidigare approximatinoer, dvs. y k, y k, y k,... (b Trunkeringsfelet är skillnaden mellan den numeriska och den exakta lösningen efter ett tidssteg. (c Metoden har noggrannhetsordning p om det lokala trunkeringsfelet är O( t p+. 6. Vi måste lösa en, vanligtvis icke-linjär, ekvation vid varje tidssteg om vi använder en implicit metod; om vi å andra sidan använder en explicit metod så behöver vi inte lösa någon ekvation. Alltså, kräver en implicit metod mycket fler aritmetiska operationer per tidssteg, jämfört med en explicit metod. Alltså är det effektivare att använda sig av en explicit metod så länge som tidsstegsbegränsningen som behövs för att ge stabilitet inte är alltför restriktiv (maximalt tillåtna t är inte för litet. 7. (a Euler framåt (α = 0, Euler bakåt (α = och trapetsmetoden (α = /. (b Det lokala felet L k+ definieras som L k+ = y(t k+ y k+, där y(t löser y = f (t, y, y(t k = y k. Genom användning av schemat har vi att L k+ = y(t k+ y k t αf (t k+, y k+ + ( αf (t k, y k ] = y(t k+ y(t k t αf (t k+, y(t k+ L k+ + ( αf (t k, y(t k ] = Taylor utveckling av f med avseende på en störning i den andra komponenten] = y(t k+ y(t k t αf (t k+, y(t k+ αd f (t k+,ξl k+ + ( αf (t k, y(t k ], där ξ (y(t k+ L k+, y(t k+. Genom att skriva om detta får vi att ( tαd f (t k+,ξ L k+ = y(t k+ y(t k t αf (t k+, y(t k+ + ( αf (t k, y(t k ]..
4 Högerledet ovan kan skrivas om enligt y(t k+ y(t k t αf (t k+, y(t k+ + ( αf (t k, y(t k ] Vilket ger oss att. = y(t k+ y(t k t αy (t k+ + ( αy (t k ] = Taylor utveckling] = y(t k + y (t k t + y (t k t + y (t k t 3 6 +O( t 4 y(t k t α (y (t k + y (t k t + y (t k t ] +O( t 3 + ( αy (t k ( = y (t k α t + y (t k 6 α t 3 +O( t 4. ( ( L k+ = y (t k α t + y (t k 6 α ( ( = y (t k α t + y (t k 6 α ( t 3 +O( t 4 tαd f (t k+,ξ t 3 +O( t 4 ( +O( t. Således har vi noggrannetsordning för α = / och annars. (b Alt.] Ett alternativ till ovanstående som kommer att ge samma ledande term i felutvecklingen (Det finns en sats och bevis för detta... är att sätta in den exakta lösningen till y = f (t, y i schemat, d.v.s. att ersätta y k = y(t k och y k+ = y(t k+ beräkna VL HL för schemat: y(t k+ y(t k t αf (t k+, y(t k+ + ( αf (t k, y(t k ] = y(t k+ y(t k t αy (t k+ + ( αy (t k ] = Taylor utveckling] = y(t k + y (t k t + y (t k t + y (t k t 3 6 +O( t 4 y(t k t α (y (t k + y (t k t + y (t k t ] +O( t 3 + ( αy (t k ( = y (t k α t + y (t k 6 α t 3 +O( t 4. Således har vi noggrannetsordning för α = / och annars. (c Tillämpning av schemat på testekvationen (y = λy ger vilket kan skrivas som y k+ = y k + t ( αλy k+ + ( αλy k, ( α tλy k+ = + t( αλ] y k. För stabilitet behöver vi y k+ y k, vilket gäller om och endast om + t( αλ. ( α tλ Eftersom λ < 0, kan vi skriva λ = λ och multiplicera båda sidor av likhet ( med α tλ = + α t λ 0 för att erhålla t( α λ + α t λ,
5 vilket ger följande två olikheter α t λ t( α λ + α t λ. Den högra olikheten är alltid uppfylld, medan den vänstra olikheten medför att t( α λ, vilket alltid är uppfyllt för / α. Således är schemat ovillkorligt stabilt för / α. Men för 0 α < / har vi stabilitetsvillkoret t λ α. (d Genom att välja α = / och ersätta f (t n+, y n+ med f (t n+,κ, där κ = y n + t f (t n, y n (extrapolation med framåt Euler får vi Heuns metod. 8. (a Schemat är explicit. (b Sätt in y k+ = y(t k+, y k = y(t k och y k = y(t k, där y är lösningen till y = f (t, y och beräkna VL HL för schemat: y(t k+ y(t k t = y(t k+ y(t k t 3f (tk, y(t k f (t k, y k ] 3 y (t k ] y (t k = Taylor expansion] = y(t k + y (t k t + y (t k t + y (t k t 3 6 +O( t 4 y(t k 3 t y (t k (y (t k y (t k t + y (t k t ] +O( t 3 = y (t k t y (t k t 3 Vilket visar att noggrannhetsordningen är. 4 +O( t 4 = 5 y (t k t 3 +O( t Ett styvt system innehåller vitt skillda tidsskalor, i fallet med ett linjärt ODE system u = Au så betyder detta att egenvärdena av matrisen A är vitt skilda i storlek. Tidsstegsbegränsningar för explicita metoder bestäms av de snabbaste tidsskalorna (den största realdelen hos egenvärdena av A, detta medför att många tidssteg behövs för att fånga förändringar i de långsamma tidsskalorna när man använder explicita metoder. Om man huvudsakligen är intresserad av de långsamma tidsskalorna så kan det vara mycket mer effektivt att använda implicita metoder.
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Teknisk beräkningsvetenskap I 5DV154
Institutionen för datavetenskap Umeå universitet 18 december 15 Teknisk beräkningsvetenskap I 5DV154 Deltentamen inkusive svar Tid: 9. 13. Hjälpmedel: Matlab. Maximalt antal poäng: 1 5 poäng är tillräckligt
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;
Föreläsning 9. Absolutstabilitet
Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går
Absolutstabilitet. Bakåt Euler Framåt Euler
Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går mot noll. Det
Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
Ordinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
BEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Lösningsförslag till tentamensskrivningen i Numerisk analys
Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med
AUTONOMA DIFFERENTIALEKVATIONER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 AUTONOMA DIFFERENTIALEKVATIONER Stabilitet Fasporträtt AUTONOMA DE: Det är speciellt enkelt att rita ett riktningsfält för en ekvation av typen y F( y) (ekv) (eller
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
2D1250 Tillämpade numeriska metoder II
1 lof Runborg NADA 2 april 2002 2D1250 Tillämpade numeriska metoder II A LABRATIN 5 rdinära differentialekvationer I den här laborationen ska ni experimentera med olika numeriska metoder för ordinära differentialekvationer.
Laboration 2 Ordinära differentialekvationer
Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Välkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Välkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0
Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1)
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) 1 a). Lös ekvationen 3p. 3y 2 y +16x = 2xy 3. b). Finn en lösning som är begränsad
Analys av jämviktslägen till differentialekvationer
Analys 360 En webbaserad analyskurs Ordinära differentialekvationer Analys av jämviktslägen till differentialekvationer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Analys av jämviktslägen
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).
. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Matlab övningsuppgifter
CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till
Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016
Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,
Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Stabilitet m.a.p. begynnelsedata
Stabilitet m.a.p. begynnelsedata Begreppet stabilitet används i flera olika sammanhang. I kap.9-14 tänker man på black-box system och insignal-utsignalstabilitet begränsad insignal = begränsad utsignal
Olinjära system (11, 12.1)
Föreläsning 2 Olinjära system (11, 121) Introduktion Vad menas med ett olinjärt system? Betrakta ett system där insignalerna u 1 (t) och u 2 (t) ger utsignalerna y 1 (t) respektive y 2 (t), d v s och u
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.
UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
(4 2) vilket ger t f. dy och X = 1 =
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Ordinära differentialekvationer, del 1
ÏÇÊÃÇÍÌ ÏÓÖ ÓÙØ ÍÔÔ Ø Ö Ø ÐÐ ÖĐ Ò Ò Ú Ø Ò Ô ÁÁ ¾ Ù Ù Ø ¾¼½ ÁÒ Ø ØÙØ ÓÒ Ò ĐÓÖ Ò ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ½ Inledning Kursen Beräkningsvetenskap II innehåller HT 2018 tre workout-pass. Syftet med dem är att du i
STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system
Diagonalisering och linjära system ODE med konstanta koe cienter.
Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3
Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter
TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER
TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER Beskrivning och mål. Den här laborationen syftar till att ge en grundläggande förståelse
Ordinära differentialekvationer fortsättning
CTH/GU STUDIO 6 TMV36b - /3 Matematiska vetenskaper Ordinära differentialekvationer fortsättning Analys och Linjär Algebra, del B, K/Kf/Bt Inledning Vi skall se lite mer på system av ordinära differentialekvationer
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Egenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
10 1 Felgraf. Fel Antal steg
Tillämpade Numeriska II, Lab 6 Josef Arvidsson, F99 7882-244 f99-jar@f.kth.se Tomas Almberger, F99 836- f99-tal@f.kth.se 25 november 23 Partiella differentialekvationer. Värmeledningsekvationen.. Del a.
d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.
Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
Kända och okända funktioner
Inledning Egenskaper Fler egenskaper Sammanfattning Kända och okända funktioner Pelle Matematikcentrum Lunds universitet 1 april 2019 Inledning Egenskaper Fler egenskaper Sammanfattning lösn av diffekv
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 4. Differentialekvationer Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign
, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att
Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Ordinära differentialekvationer
CTH/GU STUDIO 3 MVE465-8/9 Matematiska vetenskaper Inledning Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u = f(t,u), a t b u(a) = u
ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift
Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
ODE av andra ordningen, och system av ODE
ODE av andra ordningen, och system av ODE Exempel på di erentialekvation av andra ordningen (innehåller andra derivata) Pendel beskrives av Newtons andra lag: Kraft = massa Acceleration Acceleration =
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation
Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys