2D1250 Tillämpade numeriska metoder II
|
|
- Ann Åström
- för 5 år sedan
- Visningar:
Transkript
1 1 lof Runborg NADA 2 april D1250 Tillämpade numeriska metoder II A LABRATIN 5 rdinära differentialekvationer I den här laborationen ska ni experimentera med olika numeriska metoder för ordinära differentialekvationer. Arbetspass för labben är 19 och 23 april. Skicka in lösning senast 29 april via Ping Pong. Uppgift 1. Explicita metoder Vi börjar med att studera tre kvalitativt olika problem som vi löser med explicita metoder. a) Betrakta det linjära DE-systemet dy 1 = y 1 y 2, dy 2 = y 1 y 2. Välj själv några begynnelsedata y 1 (0), y 2 (0) och lös DEn exakt. (Jämför med hemuppgift 2.a). Använd Heuns metod för att beräkna en approximation av lösningen vid en fix tid T. Plotta felet vid tiden T =1som funktion av steglängden h (s.k. konvergensdiagram). Vad är noggrannhetsordningen? (Liksom i lab 4, använd loglog för plotten.) Plotta stabilitetsområdet för Heuns metod och markera de punkter hλ som motsvarar det aktuella problemet för olika h. Bestäm teoretiskt h 0 så att Heuns metod (för detta problem) är absolutstabil när 0 <h<h 0. Verifiera stabilitetsgränsen numeriskt genom att lösa problemet för lång tid, t [0, 100], med olika steglängder h. Vad händer när h>h 0? Plotta två typiska numeriska lösningar, en stabil och en instabil, i fasplanet (y 1,y 2 ) tillsammans med den exakta lösningen. Upprepa dessa experiment med den explicita Runge-utta metoden på sid 511 i boken, y n+1 = y n + h 6 ( ), 1 = f(t n,y n ), 2 = f(t n + h/2,y n + h 1 /2), 3 = f(t n + h/2,y n + h 2 /2), 4 = f(t n + h, y n + h 3 ). b) Vi studerar nu den enkla linjära oscillatorn, d 2 y 2 + y =0, y(0) = y 0, dy(0) =0. (1) Den här ekvationen modellerar till exempel odämpad svängning av en massa på en fjäder, där fjäderkonstanten/massan = 1. (Då är y avvikelsen från jämviktsläget. otkraften ges av Hooks lag, F = k fjäder y och rörelsen av Newtons andra lag, F = my.)
2 2 Den exakta lösningen till (1) är periodisk för alla y 0, närmare bestämt en cirkel i fasplanet (y, y ). Lös ekvationen med framåt Euler och lång tid, t [0,T] där T = 1/2h och h är steglängden. Låt y 0 =1. Plotta lösningen i fasplanet (använd axis equal i atlab). Blir det en cirkel? Prova olika små steglängder h. Förklara vad som händer. Välj en bättre metod och motivera valet. Lös problemet igen med samma y 0 och T.Hur stora h kan man nu ta utan att felen växer till? Plotta lösningen. c) En mer precis beskrivning av den linjära fjädern i förra uppgiften ges av den olinjära DEn (Duffings ekvation) d 2 y 2 + αdy + y + y3 =6cos(t/2), y(0) = y 0, dy(0) =0. (2) otkraften F = (αy + y + y 3 ) är nu relativt sett större ju mer fjädern töjs ut (pga y 3 -termen) och inbegriper även friktion (αy -termen). Vi har också lagt till ett högerled (6cos(t/2)), som motsvarar en yttre kraft som forcerar oscillationen. För linjära problem och fixt h är en metod antingen instabil eller stabil i hela fasplanet. För olinjära problem beror stabilitetsegenskaperna på lösningen själv, och en metod är generellt bara stabil i delar av fasplanet, när h hålls fixt. Välj α =0, 2 i(2)ochfixerah =0, 01. Beräkna var i fasplanet framåt Euler är (linjärt) stabil för detta problem. Lös (2) med framåt Euler med h =0, 01 för flera olika y 0 och relativt lång tid, T = 10. Hur stora y 0 kan man välja utan att den numeriska lösningen blir instabil och börjar växa okontrollerat? Finns det stabila lösningar som temporärt passerar utanför stabilitetsområdet i fasplanet? Hur kommer det sig? Illustrera dina resultat med några typiska plottar av lösningar i fasplanet där du även markerar området i vilket Euler framåt är (linjärt) stabil. Lös slutligen (2) med hög upplösning för lång tid, t [0, 100], och Euler framåt med h = 0, 005 (eller använd Runge-utta-metoden från a). Plotta hela lösningsbanan, t [0, 100], och jämför med att bara plotta lösningen för tiden t [70, 100]. Vad tror du händer asymptotiskt med lösningen när t? Extrauppgift: Experimentera med andra (mindre) värden på α och hitta liknande lösningar. Rent allmänt kan olinjära ekvationer ge mycket komplicerade lösningar. Duffings ekvation är ett bra exempel på detta. Uppgift 2. Styva DEer I denna uppgift undersöker vi de speciella numeriska svårigheterna som uppkommer när man löser styva DEer. Vi vill lösa det linjära systemet dy 1 = y 2, (3) dy 2 = 1000y y 2, med begynnelsedata y 1 (0) = 1, y 2 (0) = 1. Våra noggrannhetskrav är att felet vid t =1ska vara mindre än Visa att den exakta lösningen är y 1 (t) = y 2 (t) =e t. Heuns metod är som bekant en andra ordningens metod. Genom taylorutveckling av differensformeln kan det lokala trunkationsfelet uppskattas med τ n+1 Ch 2,
3 3 där h är steglängden och C bara beror på hur snäll lösningen är (maxnormen av de första derivatorna). När metoden är stabil är det globala felet begränsat av det maximala lokala trunkationsfelet, dvs vi har även E glob (T ) max 0 n N τ n Ch 2. (4) Uppskatta C genom att lösa (3) för några (riktigt) små h fram till T =1. (Jämför uppgift 1.a.) Baserat på uppskattningen (4), hur stor steglängd skulle man kunna använda och fortfarande uppnå den stipulerade noggrannheten? Vi säger att noggrannhetskravet sätter denna restriktion på steglängden h. Beräkna nu vilken restriktion stabilitetskravet sätter på h. Lös ekvationen fram till T =1med en steglängd strax under stabilitetsgränsen. Vad blir felet? För styva ekvationer utgör typiskt stabilitetskravet en mycket större begränsning på steglängden h än noggrannhetskravet, när man använder explicita metoder. Därför använder man med fördel istället implicita metoder för styva problem, helst så kallade A-stabila metoder (sådana som är absolutstabila i hela vänstra delen av komplexa talplanet). Den enklaste A-stabila metoden är bakåt Euler. Lös problemet ovan med denna metod. Hur stor steglängd kan ni använda och fortfarande uppfylla noggrannhetskravet? Bakåt Euler är bara en första ordningens metod. De så kallade BDF-metoderna är högre ordningens A-stabila metoder lämpliga för styva problem. Implementera den andra ordningens BDF-metoden y n+1 = 4 3 y n 1 3 y n 1 + 2h 3 f(y n+1). Notera att detta är en flerstegsmetod och behöver två startvektorer, för n =0och n =1. Använd bakåt Euler för att initialisera värdena vid n =1. Lös problemet som ovan, och visa i ett konvergensdiagram att ordningen faktiskt är två. Hur stor steglängd kan ni använda med denna metod för att klara noggrannhetskravet? Uppgift 3. Ray tracing Denna uppgift rör en tillämpning där ordinära differentialekvationer används för att modellera ett praktiskt ingenjörsproblem, vad som kallas det inversa problemet i geofysik. Ni får använda valfri metod för att lösa DE-erna, men ni ska kunna uppge ett ungefärligt mått på felet i slutsvaret. Bakgrund ålet är att hitta en oljeficka någonstans under marken. etoden man använder går ut på att detonera en sprängladdning vid markytan och sedan mäta tiden det tar innan en reflekterad våg når olika mätplatser runtomkring. Från de uppmätna tider går det, under vissa förutsättningar, att räkna ut läget på oljefickan. Detonationen initierar en våg som propagerar ner i marken i alla riktningar. När vågen träffar oljefickan reflekteras den i sin tur i alla riktningar, och en reflekterad våg når så småningom mätplatsen. Se skissen i figur 1. Vågutbredningen beskrivs egentligen av vågekvationen, u tt c(x) 2 u =0, x R 2, (5) där u är förskjutningen och c(x) > 0 är den lokala vågutbredningshastigheten. Det är bara när c(x) är konstant som vågfronten blir så enkel (cirkulär) som i figur 1. I praktiken är c(x) variabel och vågen utbreder sig på ett betydligt mer komplicerat sätt. Bland annat kan den böjas av och vika sig över sig själv så att flera olika delar av vågfronten kan nå nå fram till mätplatsen () vid olika tidpunkter. an registrerar då flera reflekterade vågor. Att lösa (5) numeriskt är dyrt när, som här, våglängden är kort i förhållande till totala utbredningsavståndet. Lyckligtvis går förloppet då att approximera väl med vad som kallas
4 4 t=0 t=t 1 t=t 1 t=t 2 Figur 1: Vågen initieras först i källan () vid tiden t =0, (överst, vänster). Efter en viss tid t = t 1 når vågen oljefickan (), (överst, höger). Då reflekteras den i alla riktningar (nederst, vänster). Slutligen, vid t = t 2 >t 1, når den reflekterade vågen mätplatsen (), (nederst, höger). geometrisk optik. Denna approximation brukar ofta beräknas med hjälp av ray tracing, som går ut på att betrakta vågen som en samling strålar, på samma sätt som vi oftast tänker oss att synligt ljus är strålar och inte elektromagnetiska vågor. Strålarna rör sig vinkelrätt mot vågfronten i varje punkt och beskrivs av DEn d ( 1 c(x) dx ) = c(x), x(0) = x 0, dx(0) = p 0, p 0 = c(x 0 ), (6) där x(t) =(x(t),y(t)) är strålens läge vid tiden t. Förloppet ovan kan då formuleras som följer: 1) strålar skjuts ut i alla riktningar från (); 2) minst en stråle träffar oljefickan (); 3) strålar skjuts ut i alla riktningar från (); 4) minst en av dessa träffar (). Strålarna utbreder sig enligt (6) och tiden mellan detonation och registrering vid () ges av motsvarande t i (6). Uppgifter Antag att y 0 är markytan och att koordinaterna för () och () är =(x m,y m )= ( 3, 0), respektive =(x k,y k )=(0, 0). Antag också att c(x, y) är känd, tex genom provborrningar i marken, och ges av { 1 c(x, y) = exp( x2 + xy/2), x 0, 1, x < 0. Slutligen antar vi för enkelhetens skull att ni vet att oljefickan () ligger till vänster om källan (), dvs för koordinaterna =(x o,y o ) gäller att x o < 0 (och y o < 0). ätplatsen registrerar vågor vid tre 1 tidpunkter t = T 1 = 3, t = T 2 och t = T 3.Varje labgrupp ska använda olika värden på T 2 och T 3 : Välj själv både T 2 och T 3 som heltal sådana 1 I teorin registreras även en fjärde reflektion vid t =9.26, men den är lite speciell och vi bortser från den. Att förklara den är en extrauppgift.
5 5 att 6 T 2 14 och T 2 +2 T 3 T (Vi litar på att ni inte fuskar genom att välja samma som någon annan eller ändrar er när det verkar lättare med nåt annat värde.) Ni har nu tillräckligt med information för att kunna beräkna koordinaterna (x o,y o ) för oljefickan. Visa först att strålarna (lösningarna till (6)) blir raka linjer när c(x, y) är konstant, och att utbredningstiden då är lika med längden på strålen multiplicerat med denna konstant. Beräkna numeriska värden på koordinaterna (x o,y o ). Lista själva ut hur de kan beräknas utgående från beskrivningen ovan. Utnyttja att c(x, y) är konstant i delar av området. Några komponenter i beräkningarna blir: lite enkel geometri, numerisk lösning av DEer (valfri metod), numerisk interpolation (tex med hjälp av polyfit i atlab) och numerisk lösning av icke-linjära ekvationer (tex med sekantmetoden). Redovisa hur ni har gått tillväga, förståeligt och läsligt. Illustrera med lämpligt valda plottar. Glöm inte att uppge de framräknade koordinaterna. Antag att T 2 och T 3 är givna med 5% fel. Uppskatta vad detta ger för osäkerhet i ert framräknade läge (x o,y o ) genom att störa indata och se hur resultatet påverkas.
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Absolutstabilitet. Bakåt Euler Framåt Euler
Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går mot noll. Det
Föreläsning 9. Absolutstabilitet
Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem
Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Ordinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Laboration 2 Ordinära differentialekvationer
Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!
Interpolation. 8 december 2014 Sida 1 / 20
TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.
SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
DN1240, numo08 Stefan Knutas, Fredrik Båberg, B.10: Nalle-Maja gungar
DN140, numo08 Stefan Knutas, 8811-0056 Fredrik Båberg, 88031-0511 3B.10: Nalle-Maja gungar Sammanfattning Detta arbete är skrivet som en del av Numeriska Metoder, Grundkurs. Uppgiften vi valde gick ut
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
10 1 Felgraf. Fel Antal steg
Tillämpade Numeriska II, Lab 6 Josef Arvidsson, F99 7882-244 f99-jar@f.kth.se Tomas Almberger, F99 836- f99-tal@f.kth.se 25 november 23 Partiella differentialekvationer. Värmeledningsekvationen.. Del a.
KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Föreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Laboration 1. Ekvationslösning
Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen
Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).
Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för
NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
Inlämningsuppgift 4 NUM131
Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.
Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden
Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Johan Jansson November 29, 2010 Johan Jansson () M6 November 29, 2010 1 / 26 Table of contents 1 Plan och Syfte
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Envariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Numerisk lösning till den tidsberoende Schrödingerekvationen.
Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
) + γy = 0, y(0) = 1,
Institutionen för Matematik, KTH Tentamen del Numeriska metoder SF545 8.00-.00 / 04 Inga hjälpmedel är tillåtna (ej heller miniräknare). Råd för att undvika poängavdrag: Skriv lösningar med fullständiga
Matlab övningsuppgifter
CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till
ODE av andra ordningen, och system av ODE
ODE av andra ordningen, och system av ODE Exempel på di erentialekvation av andra ordningen (innehåller andra derivata) Pendel beskrives av Newtons andra lag: Kraft = massa Acceleration Acceleration =
Lösningsförslag till tentamensskrivningen i Numerisk analys
Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Interpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Numerisk Analys, MMG410. Lecture 12. 1/24
Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010
Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...
Laboration 1, M0039M, VT16
Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.
Fel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden
Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Michael Hanke October 19, 2006 1 Beskrivning och mål Matematiska modeller i vetenskap och ingenjörsvetenskap
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
SF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
SF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
Datorlaboration i differentialekvationer
Umeå Universitet --5 Matematiska instutitionen Datorlaboration i differentialekvationer Umeå universitet --5 Inledning Laborationen består av fyra uppgifter och för detaljer och givna ekvationer i uppgifterna
Två gränsfall en fallstudie
19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
TANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Kubiska splines Approximerande Splines s s s s 4 B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. x x x x 4 x 5 Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor.
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 4. Differentialekvationer Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign
Samtliga deluppgifter i denna uppgift använder följande differentialekvation. Deluppgift a görs för hand
Numeriska Metoder för SU, HT010. Laboration 4: Ickelinjära ekvationssystem och differentialekvationer Sista redovisningsdag för bonuspoäng: 011-01-04 (L19) Obs! Skriftliga delen skall denna gång vara en