SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
|
|
- Kerstin Larsson
- för 6 år sedan
- Visningar:
Transkript
1 SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen), - öva på numerisk lösning av differentialekvationer med Matlab, - beräkna integraler med två olika metoder: Monte Carlo och kvadratur, - se förväntade värden av slumpvandring som differensmetoder, - studera ett exempel på integrationsmetod i hög dimension, - ge exempel på differentialekvationer med stokastiska data, - öva på numerisk integration, derivering, differentialekvationer, Monte Carlo metoden, och Matlabprogrammering. Denna laboration innehåller i del A frågor för träning på programmering och grundläggande numeriska metoder. Del B handlar om deterministiska och stokastiska integrationsmetoder tillämpat på finansiella kontrakt i form av optioner. Frågorna nedan, som inte alltid precist formulerade, ska ses som en vägledning för att skriva en laborationsrapport. Del A 1. En populations antal individer y(t) vid tiden t > 0 beskrivs av differentialekvationen y (t) = ky(t) ( a y(t) ), t > 0 med begynnelsevärdet y(0) = y 0 där k, a och y 0 är givna positiva konstanter. Byt variabler τ = tka och z(τ) = y(t)/a och visa att z (τ) = z(τ) ( 1 z(τ) ), τ > 0. Skriv ett matlabprogram som löser denna differentialekvation med Eulers metod z n+1 z n τ = f(z n ) n = 0, 1,,... N 1, där z n är en approximation av z(n τ) med tidsteget τ = T/N och f(z) = z(1 z), för olika val av begynnelsedata z(0). Visa figurer av Eulerapproximation av funktionen z : [0, T ] R med lämpligt val av tidsteg τ och sluttid T. Presentera även en figur som illustrerar Eulermetodens noggrannhet med avseende på parametern τ. Del A. Den implicita Eulermetoden för problemet i uppgift A1 lyder z n+1 z n = f(z n+1 ) n = 0, 1,,... N 1. Skriv ett matlabprogram för implicita Eulermetoden, där z 0 = 1, baserat på: a) fixpunktiterationer (utan att använda f ), b) Newtoniterationer (som är en slags fixpunktiteration). 1
2 Betrakta modellen där λ är en positiv konstant. Visa att z (t) = λz(t), t > 0, z(0) = 1, z n+1 = (1 λ)z n för explicita Eulermetoden, z n+1 = z n /(1 + λ) för implicita Eulermetoden, z ( (n + 1) ) = e λ z(n) för den exakta lösningen. Vi har lim t z(t) = 0. Vad gäller för explicita och implicita Eulermetoderna när n och är fixerad? Implicita Eulermetoden kräver något mer arbete (både för datorn och programmeraren) per tidsteg än explicita Eulermetoden. Ungefär hur många iterationer per tidsteg krävs? Har den implicita metoden någon fördel jämfört med den explicita? Del B. Laborationsuppgiften handlar om deterministiska och stokastiska integrationsmetoder tillämpat på optioner. En europeisk säljoption är ett kontrakt som ger möjligheten att sälja en aktie för ett fixt pris K vid en fix tid T i framtiden. Värdet f av optionen är en funktion av nuvarande aktiepris s och nuvarande tid t. Black-Scholes ekvation (0.1) f(s, t) t f(s, t) + rs + σ s f(s, t) = rf(s, t) för t < T och s R s s f(s, T ) = max(k s, 0) beskriver hur optionsvärdet beror på räntan r [0, ) och aktiens volatilitet σ [0, ). Merton och Scholes fick 1997 Riksbankens Nobelpris för härledningen av denna ekvation från en precis matematisk beskrivning av en självfinansierad riskfri portfölj utan arbitrage; härledningen bygger på den hedging som utfärdaren (banken) genomför för att hantera optionen. Kolla gärna vad självfinansierad riskfri portfölj utan arbitrage betyder. Ett alternativt sätt att bestämma optionspriset (i fallet r = 0) är att räkna ut det betingande förväntade värdet f(s, t) = E[max(K S T, 0) S t = s] där S τ löser den stokastiska differentialekvationen (0.) ds τ = σs τ dw τ som kan tolkas som gränsvärdet av Eulermetoden S ( (n + 1) τ ) = S(n τ) + σ S(n τ) W n där ( W 0,..., W n,...) är oberoende stokastiska variabler som alla är normalfördelade med väntevärdet noll och variansen. I hög dimension, d.v.s. om S(t) R d för d 1, är det ofta mer beräkningseffektivt att använda Monte Carlo alternativet. Här följer en kort motivering varför väntevärdet av den stokastiska lösningen E[max(S T K, 0) S t = s] löser den deterministiska Black-Scholes ekvation. Låt oss betrakta slumpvandringsapproximationen (0.3) X n+1 X n = α W n där ( W 0,..., W n,...) är oberoende stokastiska variabler och W n = ± τ med sannolikheten 1/ och α > 0 är en konstant. Då uppfyller väntevärdet ˆf n m = E[g(X N ) X n = mα τ] differensekvationen ˆf n m = ˆf n+1 m+1 + ˆf n+1 m 1
3 3 eftersom X n kan gå från mα τ till (m ± 1)α τ med sannolikhet 1/ på ett tidsteg. Denna differensekvation kan skrivas vilket är en finit differensapproximation av ˆf m n+1 ˆf m n + α τ α f(x, t) + t ˆf n+1 n+1 n+1 m+1 ˆf m + ˆf m 1 (α = 0 τ) f(x, t) = 0, x t < T, x R f(x, T ) = g(x), x R. Vi ser att det förväntade värdet av diskreta slumpvandringen uppfyller en differensekvation, som approximerar värmeledningsekvationen. På liknande sätt approximerar den stokastiska differentialekvationen (0.) Black-Scholes ekvation (0.1) med r = 0, vilket kan generaliseras till r > 0. Del B 1. Låt r = 0. Motivera, t.ex. med hjälp av Taylors formel, varför f(m, n) definerad av f(m, n) f(m, ( ) n 1) + σ m ( s) f(m + 1, n) f(m, n) + f(m 1, n) = 0 (0.4) ( s) f(m, N) = max(k m s, 0) approximerar f(m s, n) i Black-Scholes ekvation för heltal m och n där n N och N = T med (små) positiva reella tal och s. Del B. Skriv ett Matlabprogram som löser Black-Scholes ekvation (0.1) för r = 0 med hjälp av en differensmetod, t.ex. (0.4). Du behöver ange begynnelsedata motsvarande f(s, T ) = max(k s, 0). Du behöver också reducera s till ett ändligt intervall s 1 m s s och bestämma approximativa värden för f(s 1, t) och f(s, t) för alla t [0, T ]: motivera varför f(0, t) = K f(αk, t) = 0 kan vara lämpligt för ett stort värde på α. Välj T = 1, σ = 0. och K = 1. och bestäm f(k, 0). Tänk på att välja och s så att metoden blir stabil. Illustrera gärna lösningen med lämplig figur. Testa numeriskt noggrannheten av approximationen (0.4) till (0.1) (hur?). Beskriv de felkällor din lösning har och jämför felens storlek. Gör experimentell störningsanalys. Är stora konditionstal inblandade? Motivera noggrannheten du ser. Hur kan noggrannheten testas utan att ha tillgång till en exakt lösning? Del B 3. Denna uppgift behöver ej göras för att laborationen ska godkännas. Betrakta nu priset på en amerikansk säljoption som är ett kontrakt som ger möjlighet att sälja en aktie för ett fixt pris fram till en fix tid T i framtiden. Värdet F (s, t) av optionen är som för en europeisk option en funktion av nuvarande aktiepris s och nuvarande tid t. Låt G(s) :=
4 4 max(k s, 0). Optionspriset kan approximeras av följande differensmetod F (m s, n) F (m, n) där F (m, n) F ( ) (m, n 1) + σ m ( s) F (m + 1, n) F (m, n) + F (m 1, n) ( s) (0.5) + rm s F (m + 1, n) F (m 1, n) r s F (m, n) = 0 F (m, n 1) = max ( F (m, n 1), G(m s) ), F (m, N) = G(s). Jämför priset på amerikansk och europeisk option, med r = 0.05, T = 1, σ = 0., K = 1.. Vad händer om r = 0? För amerikanska optioner finns ingen lösningsformel, inte heller någon enkel Monte Carlo metod, som i fallet med europeiska optioner. Differensmetoden (0.5) är ett exempel på en metod för en icke-linjär partiell differentialekvation med ett hinder, i detta fall att lösningen måste alltid vara minst G. Del B 4. Integration av en funktion f : [0, 1] R kan göras på olika sätt: med hjälp av kvadratur, t.ex. med trapetsmetoden eller med slumptal och Monte Carlometoden. Låt f : [0, 1] [0, ) vara höjden av en kurva. Arean 1 f(x)dx kan tolkas som den förväntade 0 höjden E[f(X)] om positionen X är slumpmässig och likformigt fördelad på [0, 1]. Skriv ett Matlab program som bestämmer arean 1 0 (1+x) 1/ dx med hjälp av slumphöjder. Implementera också trapetsmetoden och jämför de båda metoderna med avseende på beräkningsarbete för givet fel. Del B 5. Bestäm med hjälp av Monte Carlo metoden priset på en köpoption N max(s T [n] K, 0) E[max(S T K, 0) S 0 = s] N och använd att n=1 (0.6) S T [n] = e σ T/+σW T [n] s där (W T [1],..., W T [N]) är oberoende och W T [n] är normalfördelad med väntevärdet noll och variansen T. Välj σ, T och K t.ex. som i uppgift B med s = K. Vi kan verifiera (0.6): definiera där W n är given i (0.3). Taylorutveckling ger := +1 = σ W n, och log +1 log = log +1 N 1 log S N log S 0 = n=0 (log +1 log ) = = log(1 + ) = N 1 n=0 1 ( ) S +... = σ W n σ n τ + O( τ 3/ ) (σ W n σ ) τ + O( τ 3/ ) = σx(n) σ T + O( τ 1/ ) där X(N τ) är slumpvandringsprocessen (0.3) med α = 1, som har väntevärdet noll och variansen T. I gränsen när τ går mot noll blir X(T ) normalfördelad enligt centrala gränsvärdessatsen.
5 Del B 6. Bestäm med hjälp av Monte Carlo metoden priset på en regnbågs-köp-på-maxoption [ ( E max max ( S 1 (T ), S (T ) ) K, 0 ), ] S 1 (0) = s 1, S (0) = s och använd att S i (T ) = e σ T/+σW i (T ) s i där W 1 (T ) och W (T ) är oberoende och båda är normalfördelad med väntevärdet noll och variansen T. Generalisera exemplet från dimension två till högre dimension och undersök hur beräkningsfelet växer med dimensionen. 5
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
SF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
Laboration 1: Optimalt sparande
Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,
Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Monte Carlo-metoder. Bild från Monte Carlo
Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Prissättning av optioner
TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa
Ordinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Fel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Absolutstabilitet. Bakåt Euler Framåt Euler
Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går mot noll. Det
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Föreläsning 8 för TNIU23 Integraler och statistik
Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5
LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Matlab övningsuppgifter
CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
Flervariabelanlys och Matlab Kapitel 3
Flervariabelanlys och Matlab Kapitel 3 Thomas Wernstål Carl-Henrik Fant Matematiska Vetenskaper 17 september 2009 1 3 Multipelntegraler 3.1 ubbelintegraler Exempel. Vi skall beräkna dubbelintegralen (y
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
Partiella differentialekvationer av första ordningen
Partiella differentialekvationer av första ordningen Kjell Holmåker 23 februari 2005 En kvasilinjär partiell differentialekvation av första ordningen är av formen P (x, y, u)u x + Q(x, y, u)u y = R(x,
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1
TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Matematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Modul 4 Tillämpningar av derivata
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Om existens och entydighet av lösningar till ordinära differentialekvationer
Om existens och entydighet av lösningar till ordinära differentialekvationer Anders Källén 11 maj 2016 1 Introduktion I det här kapitlet ska vi diskutera vad vi allmänt kan säga om lösningar till ett system
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Matematik 5 Kap 3 Derivator och Integraler
Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Tentamen i Finansmatematik I 19 december 2003
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Thomas Höglund Lösningar Tentamen i Finansmatematik I 9 december 003 Uppgift q = / f = fu+f d 40 30 0 0 0 0 s : 00 00 00 90 90 80 80 70 60 5 5 05 05 00 95 f
Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt
Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,
En undersökning av kvantiloptionens egenskaper
En undersökning av kvantiloptionens egenskaper Hur prissätts kvantiloptioner och hur förhåller de sig till liknande finansiella derivat på marknaden? Robin Lundberg Copyright 217 Robin Lundberg Alla rättigheter
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära