Laboration 3. Funktioner, vektorer, integraler och felskattning
|
|
- Siv Lindgren
- för 8 år sedan
- Visningar:
Transkript
1 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar, och hantera vektorer. Du kan göra olika typer av kurvanpassningar och kan uppskatta lösningsnoggrannheten och du kan skatta integraler Läsanvisning: GNM: kap 2,5. PEng: Kap Funktions-motion Skapa en funktion för f(x) = exp(x) x 3, kalla den funk1. Skapa sedan flera (minst 2) egna funktioner med namn och utseenden som du väljer själv. De skall alla vara funktioner av en variabel och ligga på separata filer med lämpliga namn. Du skall nu skriva ett program som skall kunna tabellera, plotta och integrera funktioner. Det skall först fråga efter namnet på funktionen. (Programmet får inte i förväg veta funktionernas namn. Programmet skall också fungera för Matlabs inbyggda funktioner, som tex sin och log.) Sedan skall programmet upprepat för denna funktion erbjuda tabellering, uppritning, integration och/eller nollställesökning med hjälp av en meny. Man kan sedan byta funktion och fortsätta med den nya funktionen på samma sätt. Programmet skall fortsätta tills man väljer att avsluta. Dialogen kan se ut enligt nedan Vad heter funktionen? funk1 Ditt val: 1 Tabellering: Vilket är undre gräns? 1 Vilket är övre gräns? 3 Vilket steg? 0.5 x f(x)
2 Ditt val: 4 Finna nollställe: Ange ett startvärde: 2 Ett nollställe är x = Ditt val: 5 Välja ny funktion: Vad heter den nya funktionen? sin Ditt val: 4 Finna nollställe: Ange ett startvärde: 6.3 Ett nollställe är
3 3 x = Ditt val: 6 Tack och hej! Provkör ditt program med flera olika funktioner. (Ledning: Du måste alltså läsa in namnet på funktionen. För att sedan anropa funktionen rekommenderas tex Matlab-funktionerna feval eller str2func.) 2. Kallast På filen vinter.m finns mätdata som visar temperaturen vid ett antal olika tillfällen under ett vinterdygn. a) Skriv ett program som läser in data från filen och sedan skattar dygnets lägsta temperatur med en lämpligt vald metod. (Anpassa en lämplig kurva till mätdata och beräkna kurvans minsta värde.) Vid redovisningen får du motivera varför ni valt den metod ni valt. (Här finns många rimliga val och överväganden att göra!). OBS! Inläsning av rådata sker här lättast genom att köra data-filen. Den är en m-fil! Att skriva av (kopiera in) siffrorna i sitt eget program är inte godkänt. Låt programmets redovisning av resultatet också innehålla en beskrivande plot. Denna uppgift kan lösas på många olika sätt! Välj en lämplig metod. Förklara vid redovisningen varför du valt just den metod du valt! Du skall kunna försvara ditt val! b) Varför skall du inte skriva av/kopiera in siffrorna i ditt eget program? c) Om de givna temperaturerna antas ha avrundats till en decimal, hur stor inverkan kan detta ha på din beräknade mintemperatur? (alltså: beräkna hur stort tabellfelet är i din beräknade mintemperatur).
4 4 3. Enkel integral Beräkna följande integral (a) analytiskt. I = 9 1 1/x dx Lös sedan integralen numeriskt med papper och penna och miniräknare med (b) trapetsregeln och steglängderna h = 8, h = 4 och h = 2 (c) gör Richardson-extrapolation på de tre trapetsregelvärdena ovan. (d) Välj ett bra numeriskt skattat värde på integralen med en numeriskt skattad felgräns. (Utgå från dina beräkningar i uppgift b och c ovan.) (e) Jämför nu med det sanna trunkeringsfelet genom att jämföra värdena från trapetsregeln och Richardson-extrapolationen med det analytiskt uträknade värdet. Stämmer det? Lös sedan integralen numeriskt med datorn och (f) trapetsregeln, (valfria steglängder, dock minst 5 st (fler steglängder ger en mer lättolkad plott!)) (g) trapetsregeln följd av upprepad richardson-extrapolation (pröva minst 1 omgång, gärna fler). (h) Undersök hur exakta trunkeringsfelet, E h, beror av steglängden, h, genom att plotta felet i deluppgifterna f och g som funktion av steglängen. Använd gärna MATLABs kommando loglog för plottarna. Uppskatta metodernas noggrannhetsordning, p, med hjälp av dessa plottar. För en metods noggrannhetsordning gäller E h = I analyt I approx (h) konstant h p däri approx (h) är det numeriskt uträknade integralvärdet med först bara trapetsregeln och sedan trapetsregeln följt av richardson-extrapolationen och I analyt (h) är det analytiskt uträknade integralvärdet. Stämmer detta med vad som gäller för felen enligt formlerna i kursboken? (i) Hur skattar man en felgräns om man inte har tillgång till det analytiska värdet som referensvärde? (Beskrivning söks, inget datorprogram behövs!) (Hint: samma metod som i d ovan!) (j) Illustrera integralens värde genom att färga arean under kurvan grön. (Hint: fill).
5 5 4. Integral Vi vill skatta integralen I = 2π 0 x π ( 8e )2 dx med MATLAB-program. Integralen kan skattas analytiskt med minst tio decimaler med värdet I ref = 0.04 π. Använd detta värde som referensvärde. Börja skatta integralen över hela intervallet med MATLABs quad eller integral. Sätt toleransen till Stämmer det med refensvärdet? Lös sedan integralen med trapetsregeln. Börja med att dela intervallet i 20 delar. Hur mycket och varför skiljer sig integralvärdet från referensvärdet? Halvera sedan steglängden i trapetsregeln tills dess att I ref I trap Hur många funktionsevalueringar har trapetsregeln gjort? Hur många funktionsevalueringar gjorde quad? Vilken av metoderna har använt flest funktionsevalueringar? Varför? (Tips: Om du gör anropet [I_quad,fnceval]=quad( fun_name,a,b,tol) när du använder quad så innehåller variabeln fnceval antalet funktionsevalueringar quad har använt vid beräkningen av resultatet. För trapetsregeln kan du titta på steglängden, i hur många punkter har integranden beräknats?) 5. Krympt integral Byt nu ut övre gränsen i föregående uppgift från 2π till 6. a) Skatta för hand, en övre gräns för hur mycket integralvärdet maximalt kan ha ändrats när intervallet krymptes. Justera sedan ditt referensvärde så mycket som behövs. b) Beräkna sedan integralen numeriskt med de tre metoderna (dvs quad, integral och trapetsregeln), med ett trunkeringfel på högst Hur många funktionsevalueringar behövdes med respektive metod? Vilken metod föredrar du? Varför? c) Frivillig: Hur få funktionsevalueringar kan du komma ned till och ändå få rätt svar med minst 8 decimaler (jämfört med referensvärdet)? (Tips: Se till att ditt program beräknar rätt integralvärde) 6. Kombo Läsanvisning: GNM Kap X+Y (vilka två kapitel är det?) a) Bestäm ett positivt k (dvs k > 0) med minst 8 säkra decimaler så att 5 0 e k(x 3)2 dx = k/9 0.1 k +x (med en effektiv algoritm). b) Finns det mer än en lösning med positivt k? c) Hur många funktionsfiler bör ditt program ha? Vilka då? Hur ser de ut?
6 6 d) Hur tog du fram ett startvärde till ditt program? Har du kommit på ett bättre sätt nu efter att du löst uppgiften? Om så, vilket sätt är det? Tips: Börja med att strukturera problemet. Vilka delproblem behöver lösas och vilka numeriska metoder är tillämpliga? Vilka kapitel i boken beskriver dessa numeriska metoder? Inför lämpliga beteckningar och formulera en algoritm. Fundera sedan på hur trunkeringsfelen i metoderna bidrar till felgränsen för det som söks. Lämpliga startvärden erhålles förslagsvis med trial-and-error. / NC /
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Numeriska metoder för fysiker Lördag , kl 10-14
FyL, Num met för fysiker, NADA, KTH/SU, Ninni Carlsund 8--9 Numeriska metoder för fysiker Lördag 8--9, kl -4 Skrivtid 4 tim Maximal poäng 35 + bonuspoäng från årets laborationer (max 4p) Betygsgänser:
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
DN1212 för M: Projektrapport. Krimskramsbollen. av Ninni Carlsund
Författare: Ninni Carlsund DN1212-projekt: Krimskramsbollen Kursledare: Ninni Carlsund DN1212 för M: Projektrapport Krimskramsbollen av Ninni Carlsund. 2010-04-29 1 Författare: Ninni Carlsund DN1212-projekt:
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Uppgift 1 R-S. Uppgift 2 R-M. Namn:...
2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag 26-3-27 Obs! Muntliga delen redovisas vid ett miniseminarium. Notera!
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Newtons metod och arsenik på lekplatser
Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A
Institutionen för matematik SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A 1. Betrakta funktionen fx, y = x + y och området D som ges av olikheterna x, y och x + y 1.
Gruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Beräkning av integraler
Beräkning av integraler a b f(x) dx = {ytan mellan kurvan och x-axeln från a till b} Många tekniska beräkningsproblem kan formuleras som integraler. En del integraler kan beräknas exakt men flertalet kan
DN1212 Numeriska Metoder och Grundläggande Programmering DN1214 Numeriska Metoder för S Lördag , kl 9-12
DN Numeriska Metoder och Grundläggande Programmering DN Numeriska Metoder för S Lördag 007--7, kl 9- Skrivtid tim Maximal poäng 5 + bonuspoäng från årets laborationer (max p) Betygsgänser: för betyg D:
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Rapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN SF66 Tillämpad envariabelanalys med numeriska metoder för CFATE den januari 0 kl 09.00-.00. Hur många gånger antar funktionen f) = ) värdet när varierar i intervallet 9? LÖSNING:
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
André Jaun, HT-2005 Anteckningar från lektioner i Numeriska Metoder fys-åk2. (Sid 93) Trapetsregeln Adaptiva metoder ODE-metod Förbehandlande metoder
André Jaun, HT-25 Anteckningar från lektioner i Numeriska Metoder fys-åk2. (Sid 93) Lektion 7 Integraler Problemformuleringen lyder: Beräkna A = Trapetsregeln Adaptiva metoder ODE-metod Förbehandlande
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 1 Felanalys Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur : 1
Envariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
2D1240 Numeriska metoder gk2 för F2 Integraler, ekvationssystem, differentialekvationer
18 Bengt Lindberg LABORATION 2 4127 2D124 Numeriska metoder gk2 för F2 Integraler, ekvationssystem, differentialekvationer Sista bonusdag, se kursplanen. Kom väl förberedd och med ordnade papper till redovisningen.
2D1240, Numeriska metoder gk2 för F2 och CL2 MATLAB-introduktion, minstakvadratmetoden, differensapproximationer,
21 Bengt Lindberg LABORATION 1 070518 2D1240, Numeriska metoder gk2 för F2 och CL2 MATLAB-introduktion, minstakvadratmetoden, differensapproximationer, ekvationslösning Sista dag för bonuspoäng, se kursplanen.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Laboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
f (a) sin
Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan
Sammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),
Introduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via
DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12
DN11+DN114+DN115+DN140+DN141+DN143 mfl Tentamen i Grundkurs i numeriska metoder Del (av ) Lördag 01-0-04, kl 9-1 Skrivtid 3 tim. Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgräns (inkl bonuspoäng):
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Lördag , kl 9-12 Tentamen i Grundkurs i numeriska metoder Del 1 (av 2)
DN11 mfl. Namn:...Pnr:... DN11+DN11+DN115+DN10+DN11+DN1 mfl Lördag 01-0-0, kl 9-1 Tentamen i Grundkurs i numeriska metoder Del 1 (av ) Skrivtid tim. Inga hjälpmedel. Betygsgräns (inkl bonuspoäng) för betyg
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matemati Tentamen del 2 SF1511, 2017-03-16, l 800-1100, Numerisa metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p) Inga hjälpmedel Rättas endast om del 1 är godänd Betygsgränser
Tentamen i Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.
R AKNE OVNING VECKA 2 David Heintz, 13 november 2002
RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(
Planering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?
Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:
Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
Flervariabelanalys och Matlab Kapitel 3
Flervariabelanalys och Matlab Kapitel 3 Thomas Wernstål Matematiska Vetenskaper 28 september 2012 3 Multipelintegraler 3.1 ubbelintegraler I detta kapitel skall vi studera olika sätt på vilket man kan
Samtliga deluppgifter i denna uppgift använder följande differentialekvation. Deluppgift a görs för hand
Numeriska Metoder för SU, HT010. Laboration 4: Ickelinjära ekvationssystem och differentialekvationer Sista redovisningsdag för bonuspoäng: 011-01-04 (L19) Obs! Skriftliga delen skall denna gång vara en
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
4 Numerisk integration och av differentialekvationer
Matematik med Matlab M1 och TD1 1999/2000 sid. 27 av 47 4 Numerisk integration och av differentialekvationer Redovisning redovisas som tidigare med en utdatafil skapad med diary 4.1 Numerisk av ekvationer.
0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.
Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p