Uppgift 1 R-S. Uppgift 2 R-M. Namn:...
|
|
- Ludvig Svensson
- för 8 år sedan
- Visningar:
Transkript
1 2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag Obs! Muntliga delen redovisas vid ett miniseminarium. Notera! Maxbonuspoängen till tentan är 4. Förberedelse: Denna laboration behandlar framför allt polynom-interpolation, Hermite-interpolation, splines-interpolation, numerisk integration samt differentialekvationssystem (begynnelsevärdesproblem). Hur lång tid har du förberett dig inför Lab3? SVAR:...tim. Uppgift 1 R-S a) Vi skall bestämma det tredjegradspolynom som går genom de fyra punkterna (8, 7), (14, 8), (15, 12) och (19, 1). Uppgiften handlar således om interpolation. Använd Newtons ansats för interpolationspolynomet i samtliga deluppgifter. Koefficientmatrisen kan i MATLAB genereras på följande sätt k = ones(size(x)); A = k; for i = 1 : 3; k = k. (x x(i)); A =[A k]; end; där x är en kolumnvektor med x-koordinaterna för de fyra punkterna. Koefficientmatrisen har en speciell egenskap/struktur - vilken? Förklara hur/varför den uppkommer. b) Bestäm tredjegradspolynomet, redovisa koefficienterna i Newtons ansats och rita grafen för polynomet för x (8, 19) (dvs för x mellan 8 och 19). Rita också in de fyra interpolationspunkterna, markera dem t.ex. med o. c) Rita i en annan bild polynomet för x i intervallet till 3. Markera också interpolationspunkterna. Inom vilket intervall tycker du att polynomet är lämpligt att använda? d) Utgåfrån ett lämpligt urval av de givna punkterna (ange vilka som väljs ut). och skatta p(1) med linjär interpolation. Vad blir tredjegradspolynomets värde i x = 1? Jämför värdena. Lika? Större? Lägre? Är det rimligt? e) Extrauppgift: Utgå från ett lämpligt urval av de givna punkterna. och skatta p(1) med kvadratisk interpolation. Jämför med förstagradspolynomets och tredjegradspolynomets värden. f) Extrauppgift: Vid kvadratisk interpolation beräknar man ett andragradspolynom. Visa grafiskt hur andragradspolynomet du använde för att skatta p(1) i deluppgiften ovan ser ut för x (8, 19). Rita även in de fyra givna punkterna, markera dem t.ex. med o. Vad ger det kvadratiska polynomet för värde i x = 19? Uppgift 2 R-M Givet tabellen bredvid. Du skall göra Hermite-interpolation i den. a) Bestäm för hand (och miniräknare) Hermite-interpolationens värden i x =3.1 ochx =7.5. b) Rita för hand en grov skiss av interpolationskurvan för 2 x 8. x y y
2 Uppgift 3 R-M Ludde har varit ute och funnit en ny joggingrunda. Han önskar nu göra en banprofil, dvs visa höjden över havet som funktion av hur långt han sprungit. Avstånd och höjd är mätt i meter. ( Ingen felskattning krävs) avstånd höjd lutning 6.4 Gamla joggingrundans banprofil a) Rita den banprofil man får med linjär interpolation. Beräkna och markera y(31) i banprofilen. b) Rita den banprofil man får med Hermite-interpolation. Beräkna och markera y(31) i banprofilen. c) Vilket graal har interpolationspolynomet vid Hermite-interpolation? Vilket graal har interpolationspolynomet vid naturliga kubiska splines? Vad skiljer metoderna åt? d) Anpassa ett interpolationspolynom till tabellen. Blir det bättre? e) Extrauppgift: Antag att lutningen inte var uppmätt (dvs ignorera dessa värden i tabellen). Rita den banprofil man får med naturliga kubiska splines. Beräkna och markera y(31) i banprofilen. TIPS: Rita gärna flera kurvor i en och samma bild med olika markeringar, tex med heldragen kurva, streckad kurva, markerad med ringar, markerad med kryss osv. Då syns likheter och olikheter mycket tydligare. Uppgift 4 R-S Vi skall i denna uppgift beräkna följande integral numeriskt med trapetsregeln (ev följd av Richardsonextrapolation):.9 e 2x dx 1+5x 2.3 a) Skatta integralen för hand (och miniräknare) med trapetsregeln och intervallet uppdelat i 1, 2 respektive 4delar. Välj bland dessa trapetsregelvärden för att ange ett värde med felgräns på integralen(utan att Richardsonextrapolera). (Redovisa alltså de tre trapetsregelvärdena, T 1,T 2 och T 4 samt en utifrån dessa tre trapetsregelvärden beräknad skattning av integralen, I = Ĩ ± E.) b) Richardsonextrapolera de tre trapetsregelvärdena i deluppgift a ovan. Redovisa de extrapolerade värdena. Välj bland dessa värden (trapetsregel och richardson) för att ange ett värde på integralen med felgräns. Bör man extrapolera trapetsregelvärdena? Vad avgör det? Blev svaret bättre? c) Skatta integralen med datorn och trapetsregeln med intervallet uppdelat i 1,2,4,8,16,32 respektive 64 delar. Redovisa alla sju trapetsregelvärdena. Ge sedan ett värde med felgräns beräknad utifrån dessa trapetsregelvärden (utan Richardson-extrapolation). d) Richardson-extrapolera de sju trapetsregel-värdena i deluppgift c ovan. Redovisa de extrapolerade värdena. Välj bland dessa värden (trapetsregel och richardson) för att ange ett värde på integralen med felgräns. e) Beräkna integralen med minst åtta säkra siffror med trapetsregeln och richardsonextrapolation (med valfritt antal steghalveringar och extrapolationer). Endast uppgifterna a-b ovan skall göras för hand/miniräknare. Vid handräkningen räcker 4 decimaler i mellanresultaten. Glöm inte redovisa vilka olika värden du kommit fram till i de olika deluppgifterna, tex de olika trapetsregelvärdena och extrapolerade värden. Varje deluppgift skall sedan resultera i ett värde (med eventuell felgräns) som är approximationen av integralen. (Tips: De svar som erhålls i deluppgift a-e måste förstås vara konsistenta!) 2
3 Uppgift 5 R-M Jag vill beräkna integralen e 84(11x+59)2 dx a) Jag har använt MATLABs quad, quad8 och quadl och integrerat direkt i ett anrop från -5 till 5. Oavsett vald tolerans blir svaret 3.5, prova själv! Hur inser man att detta är ett felaktigt svar? b) Föreslåminstettbättre sätt att använda MATLABs quad och/eller quad8 och/eller quadl. Förklara varför ditt sätt är bättre än naivt rakt på som i deluppgift a. Förklara alltså varför du nu kan tro på dina sex beräknade decimaler. (Att bara variera toleransen var ju inget bevis, det fann vi i a.) c) Räkna ut värdet av integralen med minst sex korrekta decimaler på detta sätt med hjälp av quad och/eller quad8 och/eller quadl. d) Extrauppgift: Integralen kan beräknas/approximeras analytiskt. Gör det. Stämmer värdet med det du fått i föregående upppgift? Uppgift 6 R-S a) Beräkna följande integral numeriskt med minst nio säkra siffror. Redovisa alla steg du gör för att få fram svaret och vilken noggrannhet ditt svar har. b) För att kunna skatta integralen I a = I b = 25 9 x(x 3/2 /7+ 5+3x 2 ) dx 9 (x 2 /7+ 5x +3x 3 ) dx numeriskt kan man ersätta övre integrationsgränsen med ett ändligt tal. Beräkna/skatta en lämplig övre gräns, B, så att man kan skatta integralen I b med integralen B med minst nio säkra siffror. Skatta därefter integralen I b med minst nio säkra siffror. Redovisa alla steg du gör för att få fram svaret och vilken noggrannhet ditt svar har. c) Antag att man vill beräkna integralen med elva säkra decimaler (integrand som i deluppgift b). 1 Hur bör man gå tillväga om man vill använda tex quad8 eller quadl? 3
4 Uppgift 7 R-M Vi skall titta på integralekvationen 17 x 5e.2 t2 = c a) Rita upp integranden och visa i denna bild hur en grov approximation till x kan ses, då c =.9. b) Bestäm x med minst fem säkra decimaler, då c =.9 (exakt!). Redovisa de steg du tar för att få fram svaret. c) Beräkna x med lämplig felgräns om i stället c =.9 ±.6 Uppgift 8 R-M I en stor lada smiter det in två möss. Då ladan är full med ost så ökar antalet möss snabbt. När mössen hunnit bli 17 stycken kommer det plötsligt in två katter... Antalet möss, m, kommer därefter att bero av både antalet möss och antalet katter, k. Ju fler möss det finns, desto fler blir det men ju fler katter det finns desto färre möss blir kvar. Enligt en forskningsrapport kan ladans befolkning beskrivas med följande differentialekvationssystem om tiden antas angiven i enheten månader. (Ladan med katter och möss finns påplanetenxα, enda skillnaden mot jorden är att katternas och mössens dräktighetstid är mycket kortare och att varje månad är exakt 3 dagar. Tideräkningen börjar i och med katternas ankomst.) dm =.12m.23k dk =.48m.92k a) Genomför tre steg med handräkning och Eulers metod och steglängden h =.3 (dvs skatta antalet möss och katter vid tidpunkterna.3,.6 resp.9). Redovisa resultatet även grafiskt (dvs antalet katter och möss som funktion av tiden). b) Beräkna med datorn och valfri numerisk metod hur många möss respektive katter finns det efter 1 månader? Efter 19 dagar? Visa även grafiskt hur antalet katter och möss utvecklas för tiden upp till 1 månader respektive 19 dagar. Ladan antas så stor att ingen ostbrist uppstår. (Detta ekvationssystem kan lösasanalytisktmen du skalllösa det numeriskt!) Fundera på vilken noggrannhetdu tyckerlösningen bör ha och se till att din lösning har denna noggrannhet. c) Modernare forskning har visat att tillväxtekvationen för katterna skulle ha varit dk =.48m.12k 48 Ekvationen för mössen är oförändrad. Påverkar detta befolkningsutvecklingen i ladan? Beräkna nu antalet katter och möss efter 1 månader och 19 dagar. Visa grafiskt befolkningsutvecklingen (dvs antalet katter och möss) som funktion av tiden för de första 1 månaderna respektive 19 dagarna. d) Extrauppgift: Rita grafer över antalet katter som funktion av antalet möss (en kurva för systemet i b-uppgiften och en kurva för systemet i c-uppgiften i varsin bild) 4
5 Uppgift 9 R-S Frivillig, värd.2 bonuspoäng. (Om den ej görs kan Lab3 ge max 1. bonuspoäng) Hundar tycker om harar. Vid tiden t = befinner sig en hare vid punkten (1 13, ) och skuttar med konstant hastighet v a =9m/slängs x-axeln. Hunden befinner sig vid tidpunkten i punkten (, 4). Hunden jagar haren med konstant hastighet v g = 11m/s och hastighetsvektorn är hela tiden riktad mot haren. Koordinaterna är givna i enheten meter och tiden mäts i sekunder. Låt (x(t),y(t)) beteckna hundens position vid tiden t. Mankanvisaattx(t) ochy(t) är lösningar till begynnelsevärdesproblemet y Hare ϕ x ẋ dx = v g cos ϕ ẏ dy = v g sin ϕ x() = y() = 4 Hund a) Härled ett uttryck för ϕ som funktion av t, x och y (v g och v a får också ingå). b) Bestäm med centimeter-noggrannhet hundens och harens positioner samt avståndet mellan dem 2 sekunder efter starten. Dito positioner och avstånd efter 7 sekunder? c) Rita med hundens position vid några olika tidpunkter (välj själv, tex t =1, 2, 3, 4, 5, 6, 7). Rita med harens position vid samma tidpunkter. Välj gärna också olika färger. d) Bestäm med två säkra decimaler tidpunkten då hunden fångar haren. Detta antas ske då avståndet mellan dem understiger 1 cm. Markera med en * platsendär hunden hann ifatt haren. (TIPS: datorprogrammet får ofta stora problem om man anger en för lång tid. Varför? Vad gör metoden då? I denna deluppgift är det viktigt att ni i metoden för differentialekvationen verkligen jobbar med centimeter-noggrannhet, varför? Fler tips finns på kursens WWW-sidor!) e) Räven, som är lika snabb som hunden men har betydligt högre intelligenskvot, lyckades fånga haren påkortastmöjliga tid. Hur bar han sig åt och hur kort blev tiden? Uppgift 1 R-S Hur lång tid har du lagt ner på förberedelser? SVAR:...tim. Hur lång tid har du lagt ner på Lab3(exklförberedelsen)? SVAR:...tim. Muntliga delen av Lab3 godkänd Namn:... Datum:... Pers.nr.:... Ass:... Antal + :... 5
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Samtliga deluppgifter i denna uppgift använder följande differentialekvation. Deluppgift a görs för hand
Numeriska Metoder för SU, HT010. Laboration 4: Ickelinjära ekvationssystem och differentialekvationer Sista redovisningsdag för bonuspoäng: 011-01-04 (L19) Obs! Skriftliga delen skall denna gång vara en
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
OH till Föreläsning 5, Numme K2, Läsa mellan raderna. Allmän polynom-interpolation, S Ch 3.1.0
OH till Föreläsning 5, Numme K2, 181119 S Ch 3-34, GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 3822 1910 3982 1920 4281 1930 4302 1940 4042 1950 3922 1960 3921 1970 3940 1980 3960 1990 3980
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
DN1212 Numeriska Metoder och Grundläggande Programmering DN1214 Numeriska Metoder för S Lördag , kl 9-12
DN Numeriska Metoder och Grundläggande Programmering DN Numeriska Metoder för S Lördag 007--7, kl 9- Skrivtid tim Maximal poäng 5 + bonuspoäng från årets laborationer (max p) Betygsgänser: för betyg D:
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Interpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
OH till Föreläsning 5, Numme K2, GNM Kap 4-4.4A / GKN Kap 4.1A,(D),E Interpolation. Läsa mellan raderna. Allmän polynom-interpolation
OH till Föreläsning 5, Numme K, 14101 GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 8 1910 98 190 481 190 40 1940 404 1950 9 1960 91 1970 940 1980 960 1990 980 Läsa mellan raderna 1900 190 1940
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
Interpolation. 8 december 2014 Sida 1 / 20
TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
2D1210, Numeriska Metoder, GK I för V 2.
Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information
Beräkning av integraler
Beräkning av integraler a b f(x) dx = {ytan mellan kurvan och x-axeln från a till b} Många tekniska beräkningsproblem kan formuleras som integraler. En del integraler kan beräknas exakt men flertalet kan
DN1212 för M: Projektrapport. Krimskramsbollen. av Ninni Carlsund
Författare: Ninni Carlsund DN1212-projekt: Krimskramsbollen Kursledare: Ninni Carlsund DN1212 för M: Projektrapport Krimskramsbollen av Ninni Carlsund. 2010-04-29 1 Författare: Ninni Carlsund DN1212-projekt:
Numeriska metoder för fysiker Lördag , kl 10-14
FyL, Num met för fysiker, NADA, KTH/SU, Ninni Carlsund 8--9 Numeriska metoder för fysiker Lördag 8--9, kl -4 Skrivtid 4 tim Maximal poäng 35 + bonuspoäng från årets laborationer (max 4p) Betygsgänser:
KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Polynomanpassning i MATLAB
Polynomanpassning i MATLAB Funktionsanropet c=polyfit(x,y,n) ger koefficiemterna i ett n:e-gradspolynom som anpassar sig till y-värdena för x-värdena med lämplig metod. I tredje föreläsningens exempel
NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT
1 Lennart Edsberg Beatrice Frock Katarina Gustavsson NADA, mars 2006 2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT A I detta projekt ska du tillämpa de metoder som du lärt dig under kursens gång för att
Numerisk Analys, MMG410. Lecture 12. 1/24
Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Gruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Föreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Numerisk Analys, MMG410. Lecture 13. 1/58
Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden
Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Michael Hanke October 19, 2006 1 Beskrivning och mål Matematiska modeller i vetenskap och ingenjörsvetenskap
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12
DN11+DN114+DN115+DN140+DN141+DN143 mfl Tentamen i Grundkurs i numeriska metoder Del (av ) Lördag 01-0-04, kl 9-1 Skrivtid 3 tim. Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgräns (inkl bonuspoäng):
TANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Kubiska splines Approximerande Splines s s s s 4 B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. x x x x 4 x 5 Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor.
DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Lördag , kl 9-12 Tentamen i Grundkurs i numeriska metoder Del 1 (av 2)
DN11 mfl. Namn:...Pnr:... DN11+DN11+DN115+DN10+DN11+DN1 mfl Lördag 01-0-0, kl 9-1 Tentamen i Grundkurs i numeriska metoder Del 1 (av ) Skrivtid tim. Inga hjälpmedel. Betygsgräns (inkl bonuspoäng) för betyg
0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av
Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
2D1240 Numeriska metoder gk2 för F2 Integraler, ekvationssystem, differentialekvationer
18 Bengt Lindberg LABORATION 2 4127 2D124 Numeriska metoder gk2 för F2 Integraler, ekvationssystem, differentialekvationer Sista bonusdag, se kursplanen. Kom väl förberedd och med ordnade papper till redovisningen.
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Lösningsförslag till tentamensskrivningen i Numerisk analys
Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005
KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014
4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Mer om generaliserad integral
Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av
1. Utan miniräknare, skissa grafen (bestäm ev. extrempunkter och asymptoter) y = x2 1 x 2 + 1
HiH / Georgi Tchilikov ENVARIABELANALYS 5p för LGr&LGy april 9.-. Hjälpmedel: Bifogat formelblad. Miniräknare. Betygsgränser: p. för Godkänd, p. för Väl Godkänd (p. från propedeutiska kursen kan tillgodoräknas)
vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.
Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på