Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
|
|
- Margareta Hedlund
- för 7 år sedan
- Visningar:
Transkript
1 Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr lab Från laborationen, olika Matlabkommandon: x = [ ]; y = [ ]; xx = linspace(0,16); % skapa x-axel p = polyfit(x,y,4) % 4:e gradspolynom p = yy = polyval(p,xx); % Evaluera polynomet yyspline = spline(x,y,xx); % spline plot(x,y, *,xx,yy, :,xx,yyspline, - ); legend( Mätpunkter, 4:grads pol, spline ); grid on; xlabel( x ); ylabel( y ); Kurvanpassning jfr lab Så här blir just detta exempel Matlabkommandon: polyfit, polyder, polyval, roots, spline Kurvanpassning jfr lab p = polyfit(x,y,n); Hittar koefficienter till interpolationspolynom av grad n. Om antal punkter > n+1 sker minsta kvadratanpassning yy = polyval(p,xx); Evaluerar polynomet p i punkterna xx y = A\b; Om systemet är överbestämt (flera ekvationer än obekanta) sker minsta kvadratanpassning yy = spline(x,y,xx); Beräkna kubiska splines Kurvanpassning innebär approximation Att anpassa en funktion till en punktmängd är en form av approximation Vanligt med polynom eftersom de är enkla att hantera, t ex derivera Kan göras på olika sätt, då polynomet inte skär genom punkterna utan är en typ av medelvärde Interpolation, då polynomet skär exakt i punkterna. Kan i sin tur göras på olika sätt Som ett polynom över hela punktmängden Som styckvisa polynom som sätts samman till en kurva, s k splines 1
2 Vanliga användningsområden Interpolation Anpassning av matematiska modeller till experimentdata (mätdata) Beräkning av approximativa värden i mellanliggande punkter Bestämning av trender Approximation av svår funktion med enklare Antag n mätvärden Exempel) x f(x) Sammanbind dessa punkter med ett polynom exakt genom samtliga punkter: ett polynom över hela punktmängden eller styckvisa polynom, s k splines Om man använder ett polynom över alla punkter bestämmer antalet punkter polynomgraden. Varför? För att entydigt bilda ett polynom av grad 1 krävs 2 punkter För att entydigt bilda ett polynom av grad 2 krävs 3 punkter Slutsats: För att entydigt bestämma ett polynom av grad n krävs n+1 punkter Ansätter man ett polynom av grad<n och har n+1 punkter får man minska kvadratanpassning Exemplet) Konstruera ett interpolationspolynom. 5 punkter 4:e gradspolynom Ansätt: Sätt in de 5 punkterna i polynomet 5 ekvationer likhet i punkterna OBS! 5 obekanta (a0,,a4) och 5 ekvationer Entydigt lösbart system! vilket ger lösningen Stoppa in detta i ansatsen ger det färdiga polynomet Plottning ger Löses med Gausselimination 2
3 Begreppet ansats Gången blir alltså Ansätt ett polynom Sätt in punkter i ansatsen (och använd likhet i punkterna) Lös systemet Sätt in lösningen i ansatsen det färdiga interpolationspolynomet Man kan i princip ansätta vilket polynom (eller annan funktion) som helst Vissa ansatser effektivare än andra I exemplet gjordes ansatsen En ansats anger att ett uttryck ska ha en viss form, men koefficienter/parametrar återstår att bestämma. Exempel: förstagradspolynom exponentiellt avtagande funktion Begreppet ansats Om p(x) är ett förstagradspolynom kan t ex följande ansatser tänkas: medelvärde Oändligt många ansatser möjliga för ett och samma polynom! Man väljer den som är praktisk, blir bäst beräkningsmässigt. Bättre ansats: Newtons interpolationsformel P 4 (x 1 ) Exemplet P 4 (x 2 ) P4 (x 5 ) På matrisform Newtons interpolationsformel ger triangulär matris! Den här ansatsen gav problemet bättre egenskaper beräkningsmässigt. 3
4 Stoppa in mätvärden i matrisen Att båda metoderna ger samma polynom beror på Stoppa in i ansatsen ger Samma polynom som tidigare! Givet Interpolation med polynom så gäller entydighet. så att Bevis Antag existerar två sådana polynom, och. Då gäller där, dvs ett polynom av grad n-1 med n nollställen ett nollpolynom vilket strider mot antagandet. Runges fenomen Exempel f(x) = 1/(1+25x 2 ) Approximera f(x) med 5:e gradspolynom (i 6 pkt:er på kurvan) Approximera med 10:e gradspolynom (i 11 pkt:er) Felet blir större ju högre grad högregradspolynom ger stora svängningar Kallas Runges fenomen Medför att man i praktiken inte bör använda polynom av höga gradtal Vanligast att 3:e gradspolynom ansätts mellan varje par av punkter, s k kubiska splines. Sätts samman till en kedja av polynom. Exemplet 4 st kubiska splines Hur kan man hitta 3:e gradspolynom mellan två punkter? Måste hitta på nya krav så antalet ekvationer och obekanta stämmer. Krav Kontinuitet i skarvarna Kontinuerlig derivata i skarvarna Kontinuerlig andraderivata i skarvarna Vanligen andraderivata = 0 i ändpunkterna ( natural spline ), men finns andra alternativ Detta leder till att kedjan sitter ihop och att det blir jämn övergång mellan länkarna i kedjan Ansätt 3:e gradspolynom på intervall i, vanligen Ger 1:a derivata och 2:a derivata Sätt samman detta så att allt hänger samman i skarvarna 4
5 Kontinuitet i skarvarna medför att s 1 (x 1 )=f(x 1 ) s 1 (x 2 )=s 2 (x 2 )=f(x 2 ) s 2 (x 3 )=s 3 (x 3 )=f(x 3 ) etc ett system med 8 ekvationer: Detta ger På samma sätt medför kontinuerlig 1:a derivata 2:a derivata = 0 i ändpunkterna ger Kontinuerlig 2: derivata i skarvarna ger dvs 2 ekvationer Antal ekvationer totalt: =16 Antal obekanta totalt: a i, b i, c i, d i, i=1,2,3,4 (4 obekanta varje intervall) 16 obekanta Lösbart ekvationssystem! Totalt 3+3 ekvationer Sätt samman de 16 ekvationerna i ett ekvationssystem och lös systemet. Ger Olika därför att MATLAB använder andra villkor i ändpunkterna ( not-a-knot -villkor) Hittills interpolation polynomet går genom punkterna Istället låt polynomet vara någon typ av medelvärde minimera avståndet mellan punkter och polynom 5
6 Exemplet igen: Antag vi vill approximera med 2:a gradspolynom Ansats t ex Likhet i punkterna x f(x) ekvationer, 3 obekanta kan (vanligen) ej lösas entydigt! Ekvationsystemet blir Kallas för ett överbestämt system, fler ekvationer än obekanta Kan ej lösas på vanligt sätt (gausselimination) beror på att det inte finns någon lösning Istället hitta lösning som minimerar Kallas minsta kvadratlösningen den bästa lösningen i minsta kvadratmening Kan hittas genom att lösa normalekvationerna Exemplet: ger Resultat: Minimering av summan av avstånden i kvadrat Konditionstal ofta stort hos A T A. I exemplet: cond 2 (A) = 82.8, men cond 2 (A T A) = Använder därför ofta ortogonalisering av A:s kolonner s k QR-faktorisering Vilket polynom ska man välja? Polynom av grad 2 eller 3 eller 4 eller? Kan finnas kunskap om den underliggande trenden, t ex att trenden ungefär bör följa en kvadratisk kurva, dvs ett 2:a gradspolynom Kan pröva olika gradtal, nerifrån och upp, tills polynomen inte ändras nämnvärt. Interpolation eller minstakvadrat - inte alltid självklart! Några olika exempel Minsta kvadrat Skulle interpolation fungera? Stor datamängd 6
7 Kastbana med data som innehåller fel (t ex mätfel eller mätningar med viss noggrannhet) Minsta kvadrat brukar användas då man har störda data. Inte rimligt att låta en linje gå exakt genom inexakta mätpunkter. Kastbana med störda data Interpolation ger Inte en bra bild av kaströrelsen Förstoring/förminskning av bilder Linjär interpolation brukar användas för att fylla ut data mellan pixlar (medför försämrad bild) Obs att t ex Word använder inte linjär interpolation utan en sämre metod än PhotoShop CAD/CAM Splines i 3D (s k B-splines) Splines används även för att jämna till bokstäver i ordbehandlare, jämna till bilder i digital video etc etc (smoothing) 7
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
Läs merNUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs merInterpolation. 8 december 2014 Sida 1 / 20
TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.
Läs merLösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merOH till Föreläsning 5, Numme K2, Läsa mellan raderna. Allmän polynom-interpolation, S Ch 3.1.0
OH till Föreläsning 5, Numme K2, 181119 S Ch 3-34, GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 3822 1910 3982 1920 4281 1930 4302 1940 4042 1950 3922 1960 3921 1970 3940 1980 3960 1990 3980
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Läs mer1.1 MATLABs kommandon för matriser
MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion
Läs merRapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
Läs merPolynomanpassning i MATLAB
Polynomanpassning i MATLAB Funktionsanropet c=polyfit(x,y,n) ger koefficiemterna i ett n:e-gradspolynom som anpassar sig till y-värdena för x-värdena med lämplig metod. I tredje föreläsningens exempel
Läs merOH till Föreläsning 5, Numme K2, GNM Kap 4-4.4A / GKN Kap 4.1A,(D),E Interpolation. Läsa mellan raderna. Allmän polynom-interpolation
OH till Föreläsning 5, Numme K, 14101 GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 8 1910 98 190 481 190 40 1940 404 1950 9 1960 91 1970 940 1980 960 1990 980 Läsa mellan raderna 1900 190 1940
Läs merTANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Kubiska splines Approximerande Splines s s s s 4 B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. x x x x 4 x 5 Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor.
Läs mer% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Läs mer0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Läs merApproximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning
Läs merNumerisk Analys, MMG410. Lecture 12. 1/24
Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Läs merNumerisk Analys, MMG410. Lecture 13. 1/58
Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Läs merSammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Läs merLAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Läs merMinsta-kvadratmetoden
CTH/GU STUDIO b TMV036c - 01/013 Matematiska vetenskaper Minsta-kvadratmetoden Analys och Linjär Algebra, del C, K1/Kf1/Bt1 1 Inledning Ett ofta förekommande problem inom teknik och vetenskap är att koppla
Läs merx 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden
24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,
Läs merLinjär Algebra och Numerisk Analys TMA 671, Extraexempel
Ivar Gustavsson / Jan Södersten Matematiska vetenskaper Göteborg 6 november 9 Linjär Algebra och Numerisk Analys TMA 67, Extraexempel (M) efter uppgiftsnumret anger att MATLAB lämpligen används för att
Läs merKort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merTentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merFö4: Kondition och approximation. Andrea Alessandro Ruggiu
TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merTeorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Läs merInnehåll. Vad är MATLAB? Vad är MATLAB? Informationsteknologi. Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Vad är MATLAB?
Innehåll Vad är MATLAB? Grunderna i MATLAB stefan@it.uu.se Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Vektorer, matriser, linjära ekv system Enkel D-grafik Spara i m-filer
Läs mer14. Minsta kvadratmetoden
58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?
Läs merTANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 3. Interpolation Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur
Läs merTMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Läs merTentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Läs merMinstakvadratmetoden
Institutionen för matematik KTH Minstakvadratmetoden Komplettering till den linjära algebran i kursen 5B6 b A b o A o V Eike Petermann/HT Man ville bestämma ett approimativt värde på tyngdaccelerationen
Läs mer9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Läs mer8. Euklidiska rum 94 8 EUKLIDISKA RUM
94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.
Läs merMer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem
Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem Texter (strängar) i MATLAB skrivs omgivna av '' och behandlas som vektorer, med samma operationer: text = 'iss'; disp(['m' text
Läs mer8.5 Minstakvadratmetoden
8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på
Läs merPolynomanpassningsprogram
Polynomanpassningsprogram Den här uppgiften skall göra en polynomanpassning av en tvåkolumners tabell enligt minstakvadrat kriteriet och presentera resultatet grafiskt. Uppgiftens tygndpunkt ligger på
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Läs merTENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Läs merIcke-linjära ekvationer
stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar
Läs merTillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation.
TAIU07 Föreläsning 6 Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation. 22 februari 2016 Sida 1 / 28 Interpolation i
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Lösningar till kryssproblemen 1-5. Uppgifter till lektion 1: = 10 x. = x 10.
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 2010-10-27 Uppgifter till lektion 1: 1. Lös olikheten 2x + 1 > 3. Lösningar till kryssproblemen 1-5. Lösning. Olikheten
Läs mer25 november, 2015, Föreläsning 20. Tillämpad linjär algebra
25 november, 205, Föreläsning 20 Tillämpad linjär algebra Innehåll: Minsta-kvadratmetoden. Minsta kvadratmetoden - motivation Inom teknik och vetenskap arbetar man ofta med modellering av data, dvs att
Läs mer5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.
Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merTANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
Läs merNovember 6, { b1 = k a
Fö 7: November 6, 2018 Linjära ekvationssystem Inledande exempel: Finn ekv för linjen L som går genom punkterna P a 1, b 1 och Qa 2, b 2 sådana att a 1 a 2. Lsg: Linjen L kan beskrivas av ekv y = k x +
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merLösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merBlock 1. 5 augusti 2003 Sammanfattning 1 (11) Teknisk databehandling DV1 vt Begrepp
5 augusti 23 Sammanfattning 1 (11) Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvgen 2 Postadress: Box 337 751 5 Uppsala Telefon: 18 471
Läs merSF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Läs merLaboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Läs merTekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska
Läs merFöreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
Läs merNewtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Läs merSammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Läs merAkademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merLösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;
Läs merFel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
Läs merLinjärisering, Jacobimatris och Newtons metod.
Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system
Läs merStudiehandledning till linjär algebra Avsnitt 4
Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 4 Kapitel 6 och 9.3 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.) I avsnitt
Läs mer15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
Läs merOrdinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs merLösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Läs merBeräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Läs mer2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merMedan du läser den är det meningen och viktigt att du ska aktivera de celler där det står Mathematicakommandon(i fetstil).
Laboration 1: Interpolation OBS! I denna notebook finns det mesta du behöver för att lösa webworkövningarna. Resten är det meningen att du ska leta reda på genom att söka i documentation centre. Medan
Läs merUppgift 1 R-S. Uppgift 2 R-M. Namn:...
2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag 26-3-27 Obs! Muntliga delen redovisas vid ett miniseminarium. Notera!
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap II Tentamen i Beräkningsvetenskap II, 5.0 hp, 2017-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merOH till Föreläsning 15, Numme K2, God programmeringsteknik
OH till Föreläsning 15, Numme K2, 180227 Hela boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet (VAD skall göras?) - Bestäm algoritm (och lagrings-struktur) - Dela upp
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Läs mer1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).
N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),
Läs merDN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser
Läs merMoment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merFel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Läs merFallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Läs merInstitutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Läs merLösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];
Läs mer