Tentamen i Beräkningsvetenskap II, 5.0 hp,
|
|
- Lars-Erik Åström
- för 6 år sedan
- Visningar:
Transkript
1 Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap II Tentamen i Beräkningsvetenskap II, 5.0 hp, Skrivtid: (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat formelblad, Mathematics Handbook eller Physics Handbook och miniräknare. För fullt uppfyllda mål och kriterier på uppgifterna krävs fullständiga räkningar och utförliga resonemang samt motivering till alla svar. Kursmål (förkortade), hur de täcks i uppgifterna och maximalt betyg (med reservation för modifieringar). Fråga nr Nyckelbegrepp Algoritmer Analys Argumentation 1 3(a) 3(b) (b)3(c) 3(a) (a) 3(b) , 5 Del A 1. (a) För att visa att du kan använda Eulers metod (Euler framåt, explicit Euler) ska du tillämpa den på differentialekvationen y 0 (t)+1000 y(t) 3 t =0, t 0, y(0) = 1 och beräkna y(0.2) med steglängd h =0.1. (b) Om man använder Euler bakåt (implicit Euler) för problemet ovan och utför motsvarande beräkning får man ett helt annat resultatet, nämligen y(0.2) = (du behöver inte räkna ut det). Ange vilken av metoderna som sannolikt ger en mer korrekt lösning och motivera (utan någon analys). Motivering krävs för godkänt resultat. 1
2 2. När man simulerar trafikflöden, t ex i en stad kan man använda stokastiska modeller och Monte Carlosimuleringar. Med hjälp av en stokastisk process kan man då studera hur många fordon som finns vid olika trafikkorsningar en viss tidpunkt, eller hur antalet förändras med tiden. Antag att den stokastiska processen finns implementerad i en Matlabfunktion function f = traffic(f0, T) Funktionen simulerar trafikfödet från tidpunkt 0 till tidpunkt T, givet ett visst antal fordon f0 vid tidpunkt 0. Ett anrop till funktionen ger alltså en simulering. Utparametern f är en vektor som innehåller antalet fordon vid alla korsningar. Om det exempelvis finns korsningar, så är f en vektor av längd Nu är man intresserad av att simulera antalet fordon vid korsning nummer 5 (dvs position 5 i vektorn). Skriv en algoritm, eller ett Matlabscript som med Monte Carlo beräknar det förväntade antalet fordon i korsning nummer 5 vid tidpunkten T. 3. Du har hittat en ODE-lösare på internet men du vet inte riktigt vad den har för egenskaper. I kursen har du lärt dig att två viktiga egenskaper är noggrannhet och stabilitet. (a) För att undersöka noggrannhetsordningen tänker du dig att man kanske kan härleda den utifrån kända feluppskattningsformler med steglängd h och 2h. För att kunna jämföra feluppskattningen med verkligt fel gör du ytterligare ett experiment men med mycket mindre steglängd och använder det som referens till den korrekta lösningen. Resultatet visas i nedanstående tabell. Uppskatta den numeriska metodens noggrannhetsordning med hjälp av tabellen. h y(10) (b) I en kommentarrad i koden står det att metoden är anpassad för styva differentialekvationer, harettstortstabilitetsområde. Förklaravadsommenasmed begreppet styva differentialekvationer. (c) När det gäller trunkeringsfelet (diskretiseringfelet) pratar man om lokalt fel och globalt fel. Förklara vad som menas med dessa två begrepp (rita gärna när du förklarar). 4. Differentialekvationen y y x =0är linjär men där koefficienten framför y 2+sin(x) varierar med x. Man säger då att den har variabla koefficienter. När man ska lösa detta problem vill man givetvis ha en stabil och korrekt lösning. Din uppgift är att undersöka vilken metod som är lämplig genom att jämföra det största tidssteget som kan användas. Du ska använda någon av klassisk Runge-Kutta (RK4), Heuns metod eller Euler framåt. Stabilitetsområdena har du slagit upp och 2
3 visas i figuren nedan. Ange vilken metod som är mest lämplig och vilket är det största tidssteget som kan användas. Figur 1: Stabilitetsområden för Euler framåt, Heun och Runge-Kutta. 5. (a) Vid beräkning av väderleksprognoser behövs indata, t ex lufttryck och temperatur, vid jämnt fördelade beräkningspunkter fördelade över Sverige. Man läser av indata på olika platser i landet men tyvärr är inte mätningar exakt på beräkningspunkterna. Man får då interpolera mellan närliggande mätningar. I tabellen nedan ges temperaturen vid vissa mätpunkter x i (enligt ett koordinatsystem som vi inte behöver bry oss om här). Enbart två mätpunkter presenteras här, men det finns givetvis många fler mätpunkter både före och efter de två mätningarna (markerat med ). Man skulle behöva temperaturen vid x =7.2 eftersom beräkningspunkten finns där. Beräkna med hjälp av Newtons interpolationspolynom och de två mätvärdena temperaturen i den punkten. x 4 8 Temp (b) Ange ett problem med beräkningen i uppgift 5(a) och vad man istället skulle kunna använda för att bestämma temperaturen vid beräkningspunkterna. 3
4 Del B 6. Minsta kvadratanpassning används vanligtvis för att anpassa ett polynom till mätdata men det kan också användas till att approximera en mer komplicerad funktion med ett enklare polynom. En orsak kan t ex vara att man vill ha en funktion som är enkel att integrera eller derivera. Den enklaste ansatsen p(x) =a 0 + a 1 x + a 2 x a n x n (s k mnemonisk bas), men det finns skäl att använda andra ansatser och en sådan ansats är s k Legendrepolynom: p(x) = NX c n L n (x) =c 0 L 0 (x)+c 1 L 1 (x)+ + c N L N (x), n=0 där L n (x) är ett Legendrepolynom av grad n. DetreförstafunktionernaiLegendrepolynomet ges i tabellen nedan. Den funktionen vi vill approximera ges inte explicit L 0 (x) L 1 (x) L 2 (x) 1 x 1 2 (3x2 1) Tabell 1: Legendre polynom L i (x) för i =0, 1, 2. här, utan vi betecknar den med f(x). Viskaapproximeradenpåx 2 [ 1, 1] med 5 jämnt fördelade kontrollpunkter och med de tre första Legendrepolynomen. (a) Ställ upp normalekvationerna för koefficienterna c 0,c 1 och c 2 för problemet ovan. Det är inte möjligt att beräkna polynomet eftersom f(x) inte är given explicit, men du ska ställa upp normalekvationerna. (b) Ange det viktigaste skälet till att använda andra ansatser än den mnemoniska basen. Här behövs ingen formel eller liknande utan bara en motivering. 7. Inom t ex meteorologi används något som kallas för ensemble-metoder. Idén är att man beräknar många väderleksprognoser och stör begynnelsevärden slumpmässigt, där störningen hämtas ur en normalfördelning. Själva prognosen beräknas genom att man löser ett system av differentialekvationer. Eftersom begynnelsevärdena är uppmätta data (lufttryck, temperatur, densitet, etc) och innehåller fel, kan man genom dessa störningar få en uppfattning hur säker prognosen är; om lösningarna hamnar väl samlat är den säker, medan den är osäker om lösningarna blir väldigt spridda. Man kan alltså här se differentialekvationen som en stokastisk process. Figuren nedan visar principen. Differentialekvationerna vid väderleksprognoser innehåller kraftigt varierande skalor, och är därför kraftigt styva. Det handlar egentligen om partiella differentialekvationer eftersom de beräknas i tre rumsdimensioner, men genom att anta att vinden är känd 4
5 Figur 2: Idén bakom ensemblemetoder kan vi reducera ekvationerna till ett system av ODE r. Kvar blir termodynamikens 2:a huvudsats c p dt R dp T dt p dt = Q allmänna gaslagen p = RT och kontinuitetsekvationen 1 d dt + f vind(t) =0. Här har vi antagit att vinden är en känd funktion. I ekvationerna är T luftens temperatur, p luftens tryck och luftens densitet, övriga parametrar kan betraktas som konstanter. En omskrivning av ekvationerna ger följande system av ODEr : d dt = f vind(t) dt dt = T (Q R f vind(t))/(c p R) (a) Skriv en algoritm t ex i Matlabliknande kod som utför ensemblemetoden med lösning av de givna differentialekvationerna enligt beskrivningen ovan, och som dessutom hittar medelprognosen, dvs medelvärdet av alla prognoser. Du kan förutsätta att du har samma typ av funktioner tillgängliga som finns inbyggt i Matlab, dvs olika typer av ODE-lösare och slumptalsgeneratorer, och som du alltså kan använda. I initialdata behöver du bara göra störningar av temperaturen. (b) Eftersom differentialekvationerna ska lösas många gånger är det mycket viktigt att beräkningen är effektiv. Redogör för vilka egenskaper hos metoden som är viktiga när det gäller beräkningstid. Använd relevanta nyckelbegrepp. Ange också vilken typ av metod du skulle välja. 5
6 Uppsala universitet Institutionen för informationsteknologi Avd. för beräkningsvetenskap Blandade formler i Beräkningsvetenskap I och II 1. Flyttal och avrundningsfel Ett flyttal fl(x) representeras enligt fl(x) = ˆm e, ˆm = ±(d 0.d 1 d 2,...,d p 1 ), 0 apple d i <, d 0 6=0, L apple e apple U, där betecknar bas och p precision. Ett flyttalssystem defineras FP(,p,L,U). Maskinepsilon (avrundningsenheten) M = 1 2 sådant att fl(1 + ) > 1. 1 p och kan defineras som det minsta tal 2. Linjära och ickelinjära ekvationer f(x Newton-Raphsons metod: x k+1 = x k ) k f 0 (x k ) För system: x k+1 = x k [F 0 ] 1 F (x k ),därx k och F (x k ) är vektorer och F 0 är Jacobianen. Fixpunktsiteration för x = g(x): x k+1 = g(x k ) Konvergenskvot, konvergenshastighet x k+1 x lim = C, k!1 x k x r där C är en konstant, och r anger konvergenshastigheten (r =1betyder t ex linjär konvergens). Allmän feluppskattning x k x? apple f(x k) min f 0 (x) Konditionstalet cond(a) =kak ka 1 k mäter känsligheten för störningar hos ekvationssystemet Ax = b. Det gäller att k xk kxk apple cond(a)k bk kbk, där x = x ˆx och b = b ˆb. Normer (vektor- respektive matrisnorm) k x k 2 = p x x n 2 k x k 1 = P i x i k x k 1 =max i { x i } k A k 1 = max j ( P i a ij ) k A k 1 = max i ( P j a ij )
7 3. Approximation Newtons interpolationspolynom p(x) då vi har n punkter (x 1,y 1 ),...(x n,y n ) bygger på ansatsen p(x) =a 0 + a 1 (x x 1 )+a 2 (x x 1 )(x x 2 )+...+ a n 1 (x x 1 ) (x x n 1 ) Minstakvadratapproximationen till punktmängden (x 1,y 1 ), (x 2,y 2 ),...(x m,y m ) med ett n:egradspolynom p(x) =a 0 1+a 1 x+...+a n x n kan formuleras som ett överbestämt ekvationssystem Ax = b, dära är m n, m>n. Minstakvadratlösningen kan fås ur normalekvationerna A T Ax = A T b 4. Ordinära differentialekvationer Eulers metod (explicit Euler): y k+1 = y k + hf(x k,y k ),n.o.1 Implicit Euler (Euler bakåt): y k+1 = y k + hf(x k+1,y k+1 ),n.o.1 Trapetsmetoden: y k+1 = y k + h 2 (f(x k,y k )+f(x k+1,y k+1 )), n.o.=2 Heuns metod (tillhör gruppen Runge-Kuttametoder): 8 < : K 1 = f(x k,y k ) K 2 = f(x k+1,y k + hk 1 ) y k+1 = y k + h 2 (K 1 + K 2 ) n.o. = 2 Klassisk Runge-Kutta: 8 K 1 = f(x k,y k ) >< K 2 = f(x k + h,y 2 k + hk 2 1) K 3 = f(x k + h,y 2 k + hk 2 2) K >: 4 = f(x k+1,y k + hk 3 ) y k+1 = y k + h(k K 2 +2K 3 + K 4 ) n.o. = 4 5. Numerisk integration Trapetsformeln Beräkning på ett delintervall med steglängd h k = x k+1 x k Z xk+1 x k f(x) dx = h k 2 [f(x k)+f(x k+1 )]
8 Sammansatt formel på helt intervall [a b], dåekvidistantsteglängdh = h k : Z b a f(x) dx h 2 [f(x 0)+2f(x 1 )+...+2f(x N 1 )+f(x N )] Diskretiseringsfelet R på helt intervall [a b], dvs R b f(x) dx = T (h)+r är a R = (b a) h 2 f 00 ( ). 12 Funktionsfelet (övre gräns): (b a), där är en övre gräns för absoluta felet i varje funktionsberäkning. Simpsons formel Beräkning på ett dubbelintervall med steglängd h Z xk+2 f(x) dx = h x k 3 [f(x k)+4f(x k+1 )+f(x k+2 )] Sammansatt formel på helt intervall [a b], dåekvidistantsteglängdh = h k : Z b a f(x) dx h 3 [f(x 0)+4f(x 1 )+2f(x 2 )+4f(x 3 )+...+2f(x N 2 )+4f(x N 1 )+f(x N )] Diskretiseringsfelet R på helt intervall [a b], dvs R b f(x) dx = S(h)+R är a R = (b a) 180 h4 f 0000 ( ). Funktionsfelet: Samma som för trapetsformeln, se ovan. 6. Richardsonextrapolation Om F 1 (h) och F 1 (2h) är två beräkningar (t ex ett steg i en beräkning av en integral eller en ODE) med en metod av noggrannhetsordning p med steglängd h respektive dubbel steglängd 2h så är R(h) = F 1(h) F 1 (2h) 2 p 1 en uppskattning av den ledande termen i trunkeringsfelet i F 1 (h). Kanävenanvändasför att förbättra noggrannheten i F 1 (h) genom F (h) =F 1 (h)+ F 1(h) F 1 (2h). 2 p 1
9 7. Numerisk derivering För numerisk derivering används s k differensformler f 0 (x) f 0 (x) f(x+h) h f 0 (x) h f 00 (x) f(x+h) f(x h) 2h f(x) f(x) f(x h) f(x+h) 2f(x)+f(x h) h 2 8. Monte Carlometoder, centraldifferens, framåtdifferens, bakåtdifferens Den övergripande strukturen för Monte Carlosimuleringar är Indata N (antal försök) for i = 1:N Utför en stokastisk simulering resultat(i) = resultatet av simuleringen end slutresultat genom någon statistisk beräkning, t ex medelvärdet mean(resultat) Noggrannhetsordning för Monte carlometoder är O( 1 p N ),därn är antal samplingar. Kumultativ fördelningsfunktion: F (x) = R x1 f X(y)dy Normalfördelning f X (x) = 1 p 2 e (x µ) Aritmetiskt medelvärde baserat på N realisationer x i av slumpvariablen X: µ = 1 N P N i=1 x i. 9. Taylorutveckling Taylorutveckling av y(x k + h) kring x k : y(x k + h) =y(x k )+hy 0 (x k )+ h2 2! y00 (x k )+ h3 3! y000 (x k )+O(h 4 )
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merFÖRSÄTTSBLAD TILL TENTAMEN
Institutionen för informationsteknologi INSTRUKTIONER Kontrollera att du fått rätt tentamensuppgifter! Detta blad skall alltid inlämnas ifyllt även om ingen uppgift behandlats. Varje uppgiftslösning skall
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merOrdinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTeorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Läs merLösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merOrdinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merFÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Läs mer0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Läs merSammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Läs merLösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Läs merTentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
Läs merLösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
Läs merELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Läs merTentamen i Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.
Läs merSammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Läs merMatematik: Beräkningsmatematik (91-97,5 hp)
DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Läs merLAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Läs merTENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merKort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merTENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Läs merAkademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
Läs merTentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merTentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Läs merELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!
Läs merSammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga
Läs merTENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Läs merf(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Läs merLösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merFö4: Kondition och approximation. Andrea Alessandro Ruggiu
TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September
Läs merLösningsförslag till tentamensskrivningen i Numerisk analys
Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs merFel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
Läs merLABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Läs merSF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
Läs merTentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Läs merFallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Läs merFacit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!)
Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna
Läs mery + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:
Läs merExempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016
Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Läs merLinjär Algebra och Numerisk Analys TMA 671, Extraexempel
Ivar Gustavsson / Jan Södersten Matematiska vetenskaper Göteborg 6 november 9 Linjär Algebra och Numerisk Analys TMA 67, Extraexempel (M) efter uppgiftsnumret anger att MATLAB lämpligen används för att
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Läs merLABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Läs merFacit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Läs merPreliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Läs merTANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merAkademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA3 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 7 januari 03 Examinator: Karl Lundengård Skrivtid:
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN8 09-03-30 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN7 (GNM kap 4, 6.3)! Bandmatrismetoden/Finita differensmetoden!
Läs merDN1212 Numeriska Metoder och Grundläggande Programmering DN1214 Numeriska Metoder för S Lördag , kl 9-12
DN Numeriska Metoder och Grundläggande Programmering DN Numeriska Metoder för S Lördag 007--7, kl 9- Skrivtid tim Maximal poäng 5 + bonuspoäng från årets laborationer (max p) Betygsgänser: för betyg D:
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merFöreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Läs merFel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Läs merFacit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Läs merFacit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Läs merOH till Föreläsning 15, Numme K2, God programmeringsteknik
OH till Föreläsning 15, Numme K2, 180227 Hela boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet (VAD skall göras?) - Bestäm algoritm (och lagrings-struktur) - Dela upp
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merDN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Lördag , kl 9-12 Tentamen i Grundkurs i numeriska metoder Del 1 (av 2)
DN11 mfl. Namn:...Pnr:... DN11+DN11+DN115+DN10+DN11+DN1 mfl Lördag 01-0-0, kl 9-1 Tentamen i Grundkurs i numeriska metoder Del 1 (av ) Skrivtid tim. Inga hjälpmedel. Betygsgräns (inkl bonuspoäng) för betyg
Läs merFacit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Läs merMonte Carlo-metoder. Bild från Monte Carlo
Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning
Läs merInstitutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Läs merAnsvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
Läs merDatoraritmetik. Från labben. Från labben. Några exempel
Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,
Läs merAkademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:
Läs mer2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
Läs merStudietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Läs mer