Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
|
|
- Jan-Erik Mattsson
- för 6 år sedan
- Visningar:
Transkript
1 Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, Kursmål (förkortade), hur de täcks i uppgifterna och maximalt betyg Fråga nr Nyckelbegrepp Algoritmer Analys Programmering 1 3, , , 5 7 4, 5 Del A 1. (a) i. Sant. REALMIN är det minsta normaliserade flyttalet men det finns mindre tal som kan representeras. Dessa tal är subnormala och har lägre precision. ii. Falskt, konditionstalet bör vara så lågt som möjligt. Konditionstalet är en indikator på hur störningskänsligt ekvationssystemet är. Stort konditionstal medför hög störningskänslighet. iii. Falskt, felet avtar linjärt asymptotiskt och bisektsmetoden har då konvergenshastigheten 1. iv. Sant, diskretiseringsfelet är det matematiska felet och beror ej av flyttalssystemet och maskinepsilon. v. Falskt, normen av residualen blir ett mått på hur bra x uppfyller ekvationssystemet och beräknas A x b där x är vår approximativa lösning. Störningskänsligheten anges av konditionstalet. (b) Vid subtraktion av jämnstora tal i flyttalsaritmetiken tar de mest signifikanta siffrorna ut varandra och ersätts av osignifikanta (felaktiga) siffror. Detta kan då ge ett stort relativt fel i resultatet.. Pivotera högerledet: 1 Pb = 1
2 Framåtsubstitution: d = L\Pb d 1 = 1 d =.3333 d 3 = Bakåtsubstitution: 3. (a) I = x = U\d x 3 = x =.4545 x 1 = 1. 1 e x dx med trapetsformeln: h = 1 ( ) I = h e +e 1 = 1 (1+e 1 ) h 1 = 1 ( ) ) I 1 = h 1 e +e (1 ) +e 1 = (1+e e R 1 = I 1 I > 1 h = 1 4 ) I = (1+e e 1 4 +e e R = I I < 1 Svar: 1 e x dx (b) Trapetsformeln är av andra ordningen felet Ch. Vid h = h är felet 1 6. Vid h = h är felet.4. Det vill säga C(h ) 1 6 och Ch.4.
3 Dividera: (h ) 1 6 h 4 1 3, h = 1. 4 )3 1 3 (h ) ( 1 4 h Svar: För ett fel 1 6 krävs steglängden 4 1 3, vilket innebär 5 steg. 4. (a) Funktion som definierar integranden, filnamn integrand.m: function f = integrand(x, sigma) f = exp(-x.^/sigma); Beräkning av integralen med hjälp av integral: >> S=integral(@(x)integrand(x,.5),-1,1); (b) Exempel på torrexekvering: % In-parametrar till funktionen f x^3+5*x*x a = -3 b = 5 n = % Funktionen börjar här h = (5-(-3))/(*) = 8/4 = x = -3::5 = [-3,-1,1,3,5] sum = f(x(1)) : x(1) = -3 => f(-3) = *9 = 18 => sum = 18 % for i = ::length(x)-1 => for i = ::4 i = sum = sum + 4*f(x()) : x() = -1 => f(-1) = = 4 => sum = 18+4*4 = 34 i = 4 sum = sum + 4*f(x(4)) : x(4) = 3 => f(3) = 7 + 5*9 = 7 => sum = 34+4*7 = 3 % slut for-loop eftersom nästa i = 6 > 4 % for i = 3::length(x)- => for i = 3::3 i = 3 sum = sum + *f(x(3)) : x(3) = 1 => f(1) = = 6 => sum = 3+*6 = 334 % slut for-loop eftersom nästa i = 5 > 3 3
4 sum = sum + f(x(end)) : x(end) = x(5) = 5 => f(5) = *5 = 5 => sum = = 584 I = (h/3)*sum = (/3)*584 = För att hitta en lösning till x+e x = 3 formulerar vi först om problemet till att hitta ett nollställe till f(x) = x+e x 3. (Man kan även välja f(x) = 3 x e x, men här väljer vi det första alternativet.) Newton-Raphsons metod är x k+1 = x k f(x k) f (x k ), där vi i det här fallet har f(x) = x+e x 3 och f (x) = 1+e x. Felet e k i iteration k uppskattas med e k x k+1 x k = f(x k ) f (x k ). Från uppgiften får vi att vi efter tre iterationer har approximationen x 3 =.8, och då kan vi uppskatta felet till e 3 f(.8) f (.8) Frågan är nu hur många iterationer som krävs för att felets storlek ska vara mindre än 1 8. Då måste vi komma ihåg att Newton-Raphsons metod har kvadratisk konvergens, vilket betyder att e k+1 e k. Frågan är alltså hur många gånger felet e 3 =.79 ska kvadreras för att bli mindre än 1 8. Man kan ställa upp en ekvation för detta:.79 k = 1 8 log(.79 k ) = log(1 8 ) klog(.79) = log(1 8 ) k = log(1 8 ) log(.79) k 1.96, 4
5 Del B så antalet iterationer måste vara större än 1.96, vilket betyder att man behöver iterationer. Det går även bra att testa sig fram: e 3.79 e e 5 ( ) och då ser vi att e 5 < 1 8, så att den 5:e iterationen bör vara tillräckligt nära, och svaret blir att det räcker med ytterligare iterationer. 6. Givet intervallet [ a b ] approximera f(x) med en rät linje p(x), enligt figur. p(x) = f(a)+ f(b) f(a) (x a) b a Lös därefter ekvationen p( x) =. = f(a)+ f(b) f(a) ( x a) x = af(b) bf(a) b a f(b) f(a) a p(x) c b.5 f(x) x Vilket ger punkten c = x. Det nya intervallet väljs nu utifrån c och det gamla intervallets gränser så att den exakta lösningen omfattas (i det här fallet blir det nya intervallet [ c b ]). Därefter upprepas algoritmen tills felmarginalen är tillräckligt liten. Det enda vi vet är att lösningen omfattas av intervallet och då kan felet som högst vara lika med intervallängden. Algoritmen blir: 5
6 function r = nymetod( f, a, b, tol) % Felet kan högst vara lika med intervallets längd % Iterera tills feltoleransen har uppnåtts while (b-a)>tol % Hitta approximativ lösning c = (a*f(b) - b*f(a))/(f(b) - f(a)); % Välj nytt intervall if ( f(c) == ) r = c; return; % Vi har hittat lösningen, avbryt elseif ( f(c)*f(a) < ) b = c; else a = c; end end r=c; 7. Vi kan formulera om problemet till att hitta ett nollställe till funktionen f(x) = e x +x 1 e (xy) dy. De metoder för att hitta nollställen som ingår i kursen är Newton-Raphsons metod och bisektionsmetoden. Eftersom Newton-Raphsons metod behöver derivatan är bisektionsmetoden ett lämpligt val i det här fallet. I Matlab kan vi implementera f(x) i en funktionsfil och använda oss av fzero. Eftersom f(x) innehåller en integral, så vi måste först lösa problemet att beräkna integralen I(x) = 1 e (xy) dy. I kursen ingår trapetsformeln och Simpsons formel för beräkning av integraler. För att kunna beräkna integralen i Matlab implementerar vi först integranden e (xy) i en funktionsfil: function i = integrand(y, x) i = exp(-(x.*y).^); Funktionen tar både variabeln y som vi integrerar över, och en extraparameter x. Vi kan nu använda integral för att givet ett visst x beräkna integralen: 6
7 >> I = integral(@(y) integrand(y, x),, 1) Sedan skriver vi en funktionsfil för funktionen f(x) som vi vill hitta nollställe till: function fx = f(x) fx = exp(x) + x * integral(@(y) integrand(y, x),, 1); och slutligen anropar vifzero så här, där vi utifrån grafen valt startgissning x =.5: >> x = fzero(@f,.5) ans = Man kan även genom att använda namnlösa funktioner uttrycka allt detta på en enda rad: >> fzero(@(x) exp(x)+x*integral(@(y) exp(-(x.*y).^),, 1),.5) ans = För högsta betyg ska man även resonera om vilka fel som ingår. Det viktiga är att vi har ett diskretiseringsfel vid beräkning av integralen som kommer in som ett funktionsfel när vi söker efter ett nollställe. Vi kommer alltså söka efter ett nollställe till en funktion f(x) i stället för f(x). Vi kan uppskatta funktionsfelet f(x) f(x) utifrån diskretiseringsfelet från integralberäkningen. Om vi beräknar integralen med trapetsformeln kan vi använda tredjedelsregeln för att uppskatta diskretiseringsfelet, och använder vi Simpsons formel kan vi använda femtondelsregeln. Utifrån det kan vi ta två funktioner som tar det största och minsta möjliga felet: f max (x) = f(x)+fel f min (x) = f(x) fel Nollstället till f(x) ligger då någonstans mellan nollställena till f max (x) och f min (x). För att hitta dessa nollställen använder vi till exempel bisektionsmetoden. Den hittar inte ett exakt nollställe utan ger ett intervall där roten finns. Vi får då var sitt intervall 7
8 för nollställena till de två funktionerna. Om f min (x) har ett nollställe i intervallet [a min,b min ], och f max (x) har ett i [a max,b max ] kan vi som slutgiltig uppskattning av nollstället x ta intervallet från den lägsta av de undre gränserna till den högsta av de övre gränserna: x [a,b], a = min(a min,a max ), b = max(b min,b max )]. x * a max b max a min b min f max (x) f(x) f min (x) a b Det kommer också uppstå avrundningsfel då alla tal inte kan representeras exakt i flyttalssystemet, men dessa är obetydliga jämfört med de andra felen. Om ekvationen kommer från någon modell av verkligheten har vi även ett modelleringsfel, eftersom den inte beskriver verkligheten exakt. I uppgiften anges inget om var ekvationen kommer ifrån, så vi kan inte resonera om vilka modelleringsfelen skulle kunna vara. 8
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Sammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
Tentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Tentamen i Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Icke-linjära ekvationer
stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?
Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Tentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: 9 januari 2017 kl 08 00 11 00 OBS! 3 timmar! Hjälpmedel: Endast penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Ickelinjära ekvationer
Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod
Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!)
Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Icke-linjära ekvationer
stefan@it.uu.se Eempel f ( ) = e + = 5 3 f ( ) = + + 5= f (, y) = cos( ) sin ( ) + y = Kan endast i undantagsfall lösas eakt Kan sakna lösning, ha en lösning, ett visst antal lösningar eller oändligt många
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 08 21, f Telefon: Jonatan Vasilis, 0762 721861 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50 poäng.
Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Gruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matemati Tentamen del 2 SF1511, 2017-03-16, l 800-1100, Numerisa metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p) Inga hjälpmedel Rättas endast om del 1 är godänd Betygsgränser
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Sammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).
Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?
Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07
Linjärisering och Newtons metod
CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap II Tentamen i Beräkningsvetenskap II, 5.0 hp, 2017-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:
Kapitel 4. Iterativ lösning av ekvationer
Kapitel 4. Iterativ lösning av ekvationer Vi skall nu undersöka, har man löser numeriskt ekvationer av formen f(x) = 0. Dylika ekvationer kallas också olinjära, eftersom funktionen oftast har ett olinjärt
7 november 2014 Sida 1 / 21
TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:
Labb 3: Ekvationslösning med Matlab (v2)
Envariabelanalys Labb 3: Ekvationslösning 1/13 Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys 2007-03-05 Björn Andersson (IT-06), bjoa@kth.se Johannes Nordkvist (IT-06), nordkv@kth.se Det finns
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via
Numeriska metoder för fysiker Lördag , kl 10-14
FyL, Num met för fysiker, NADA, KTH/SU, Ninni Carlsund 8--9 Numeriska metoder för fysiker Lördag 8--9, kl -4 Skrivtid 4 tim Maximal poäng 35 + bonuspoäng från årets laborationer (max 4p) Betygsgänser:
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Lösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Intervallhalveringsmetoden, GKN sid 73. Sekantmetoden, GKN sid 79
e x sin(x) = 2 Intervallhalveringsmetoden, GKN sid 73 f(x) = 0 = Roten finns x f(x) i intervallet Skrivs Intervallangd ----------------------------------------------------------------------------- 1.0-0.1232
Datoraritmetik. Från labben. Från labben. Några exempel
Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Newtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION 6 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra veckan såg vi på intervallhalveringsmetoden. Den är pålitlig men
Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
1.6 Lösningar till kapitel 8
214 45 1.6 Lösningar till kapitel 8 1: function I = int_quad(t, C) % Compute the integral (over [t(1), t(end)), of the piecewise % quadratic polynomial defined by t and C. I = sum(c(1, :).* (t(2:end).^3
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN SF66 Tillämpad envariabelanalys med numeriska metoder för CFATE den januari 0 kl 09.00-.00. Hur många gånger antar funktionen f) = ) värdet när varierar i intervallet 9? LÖSNING:
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
--x T Kx. Ka = f. K( a a i. = f f i. r i. = a a i. Ke i. a i 1. p i. Ka i. p i Kai α i
CHALMERS FinitElementmetod M3 illämpad mekanik Föreläsning 18, 15/1 014 91. Lösningen till ekvationssystemet Gradient och konjugerad gradientmetod. a f (1) minimerar den kvadratiska funktionen Π( x) 1
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,