Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,"

Transkript

1 Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Skrivtid: (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat formelblad och miniräknare. För fullt uppfyllda mål på uppgifterna krävs att det redovisar uträkningar och utförliga resonemang och motiveringar till alla svar. Kursmål (förkortade), hur de täcks i uppgifterna och maximalt betyg (med reservation för modifieringar). Fråga nr Nyckelbegrepp Algoritmer Analys Programmering Del A 1. (a) Visa att du behärskar algoritmen för LU-uppdelning med pivotering, genom att utföra algoritmen på matrisen A = Ange LU-faktorerna och pivoteringsmatrisen P explicit. (b) Antag att du löser ett stort ekvationssystem (inte det i (a) alltså) med Gausselimination, och att det tar ca 1 minut att lösa detta system på en dator i labsalen. Nu har du tänkt lösa ett dubbelt så stort ekvationsystem, och du har bara 5 minuter på dig innan labben är slut. Det måste väl ändå funka, säger din kompis vid datorn bredvid. Men vad gäller egentligen? Hur lång tid kommer det ungefär att ta att lösa systemet? Motivera ditt svar. 1

2 2. Nedan ser du några utskrifter från Matlab (delvis tagna från en av laborationerna i kursen). För var och en av dessa, ange ett nyckelbegrepp som är relaterat till det du ser och förklara också på vilket sätt det är relaterat. Använd enbart ett nyckelbegrepp per exempel. (a) (b) >> a = 1e-10; b = 1e-26; >> a+b ans = e-10 >> x= A\b; Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = e Planeterna rör sig i excentriska banor runt solen, men med vissa irregulariteter (de är inte perfekt excentriska). Kepler introducerade en excentrisk anomali E (radianer), medel-anomali M (i radianer) och excentriciteten, e i den icke-linjära ekvationen M = E e sin(e). Använd Newton-Raphsons metod för att beräkna E med toleransen 0.05 (dvs en korrekt decimal) givet att M = π 6 (= 30 ), och e = 0.5. Starta med startapproximationen E 0 = 0.5. För godkänt måste du kontrollera stoppvillkoret (ingår i algoritmen). Använd radianer i dina beräkningar. (Om du inte har radianer i din miniräknare kan gå från grader till radianer genom att multiplicera vinkeln i grader med π 180.) 4. Antag att du har skrivit en kod som utför integrering med Simpsons metod utan adaptivitet. Men är koden är korrekt eller ej? För att ta reda på detta utför du ett test där koden används för att lösa en integral med känd lösning. På detta sätt kan felet beräknas. Testet ger följande resultat för olika steglängd h I Q(h) Den exakta lösningen betecknas här med I och den beräknade lösningen med steglängd h betecknas Q(h). Utgående från resultaten, är det sannolikt att koden är korrekt eller ej? Motivera ditt svar. 2

3 5. (a) Nedanstående Matlabfunktion utför beräkning av kubikrot av a, dvs 3 a: function x = kubikrot(a, x0, tol); x(1) = x0; fel = tol + 1; i = 1; while fel > tol x_ny = x(i) - (x(i)^3-a)/(3*x(i)^2); fel = abs(x_ny - x(i)); x = [x ; x_ny]; i = i+1; end Torrexekvera programmet då det anropas med x = kubikrot(7, 2, 0.1). Med torrexekvering avses att du följer programmet och redovisar rad för rad vad som händer (och skriver ut successiva värden på parametrar etc). (b) Skriv den matematiska funktionen f(x) = x p sin(x) som en Matlabfunktion med namnet func1. Parametern p ska ha värdet 0.5. Matlabfunktionen ska vara skriven så att den lagras i en egen m-fil i Matlab. 3

4 Del B 6. Ett företag producerar elektriska kretsar med olika elektriska komponenter. Strömmen i olika knutpunkter i en sådan elektrisk krets kan beräknas via ett linjärt ekvationssystem Ax = b, där n n-matrisen A är härledd ut den elektriska kretsen och är densamma givet en viss elektrisk krets. Vektorn med obekanta x innehåller strömmen i n st knutpunkter i kretsen, och högerledet b innehåller spänningen i ett antal spänningskällor i kretsen (och i övrigt nollor). Problemet är att spänningen inte är konstant i spänningskällorna, utan de varierar i praktiken lite grann kring värdena i b. För att veta hur det påverkar strömmen i kretsen och om de olika komponenterna klarar av dessa strömvariationer vill man nu simulera detta. I varje simulering beräknas ett nytt högerled b i som innehåller slumpmässiga variationer kring värdena i b, genom ett anrop till en funktion b_i = disturb_b(b). Efter detta beräknas strömmen genom att ekvationssystemet Ax i = b i löses. Detta ska upprepas k gånger, där k t ex kan vara 1000 eller Din uppgift blir nu att beskriva den övergripande algoritmen för att lösa detta problem på ett effektivt sätt. Till din hjälp finns ett antal redan färdiga funktioner som du väljer bland: x = gaussel(a,b), utför Gausselimination av ett system Ax = b Ainv = inverse(a), beräknar invers av en matris x = forwardsub(l,b), utför framåtsubstitution x = backsub(u,x), utför bakåtsubstitution [L,U,P] = LUfact(A), utför LU-faktorisering av en matris A b_i = disturb_b(b), redan beskriven ovan Du måste använda dessa funktioner, men du väljer de som är lämpliga för att lösa problemet. För högre betyg måste du även uppskatta beräkningstiden för din lösning, givet att n = och k = 1000 och tiden för en flyttalsoperation (t ex en multiplikation, addidtion etc) är t fl = 10 9 sekunder. 7. I en utredning om sjön Tämnaren i nordvästra Uppland mäter man sjödjupet i ett tvärsnitt av sjön där den är som bredast. Mätningen genomförs genom att man åker båt längs en rät linje från ena stranden av sjön till den andra. På olika ställen längs vägen mäter man sjödjupet med ekolod. Låt x 0 = 0 vara koordinaten för ena stranden, och x n koordinaten för den andra stranden och x j, j = 1,..., n 1 koordinaterna för mätpunkterna. Mätvärdet vid punkten x j betecknas med d j. Noggrannheten i ekolodsutrustningen medför att d j mäts med 3 exakta decimaler (dvs absoluta felet ). Vid de två strandpunkterna är djupet noll. Djupmätningarna kan av praktiska skäl inte göras med helt jämna mellanrum i x-led, utan avståndet mellan intilliggande mätpunkter varierar. 4

5 Beskriv hur problemet skulle kunna lösas och ange med motivering vilken algoritm som är lämplig för att beräkna arean av det aktuella tvärsnittet av sjön. Skriv sedan ett program eller skissa på en algoritm för den metod du valt. Samtliga mätvärden ska utnyttjas. I ditt program kan du förutsätta att x- och d-värdena finns lagrade i två vektorer x respektive d. Ange även hur man skulle kunna uppskatta det totala felet i beräkningarna (här kan du för enkelhets skull anta att avståndet mellan intilliggande punkter inte varierar utan är densamma hela tiden). 5

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!)

Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer: FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)

Läs mer

Tentamen i Beräkningsvetenskap I (1TD393)

Tentamen i Beräkningsvetenskap I (1TD393) Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.

Läs mer

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394 Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)

Läs mer

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,

Läs mer

Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,

Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt

Läs mer

Sammanfattninga av kursens block inför tentan

Sammanfattninga av kursens block inför tentan FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Tentamen i: Beräkningsvetenskap I och KF

Tentamen i: Beräkningsvetenskap I och KF Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska

Läs mer

Block 2: Lineära system

Block 2: Lineära system Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Tentamen i: Beräkningsvetenskap I och KF

Tentamen i: Beräkningsvetenskap I och KF Tentamen i: Beräkningsvetenskap I och KF Skrivtid: 9 januari 2017 kl 08 00 11 00 OBS! 3 timmar! Hjälpmedel: Endast penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet

Läs mer

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del

Läs mer

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. 11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1. MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

November 6, { b1 = k a

November 6, { b1 = k a Fö 7: November 6, 2018 Linjära ekvationssystem Inledande exempel: Finn ekv för linjen L som går genom punkterna P a 1, b 1 och Qa 2, b 2 sådana att a 1 a 2. Lsg: Linjen L kan beskrivas av ekv y = k x +

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära

Läs mer

Introduktionsföreläsning

Introduktionsföreläsning Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,

Läs mer

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c. UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Beräkningsvetenskap introduktion. Beräkningsvetenskap I

Beräkningsvetenskap introduktion. Beräkningsvetenskap I Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och

Läs mer

Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen

Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)

Läs mer

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration 10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive

Läs mer

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3 1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift

Läs mer

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

Tentamen i Teknisk-Vetenskapliga Beräkningar

Tentamen i Teknisk-Vetenskapliga Beräkningar Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Introduktionsföreläsning

Introduktionsföreläsning Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 1 september, 2014 Lärare Emanuel Rubensson Outline 1 Vad är beräkningsvetenskap? 2 Information

Läs mer

TMV166 Linjär Algebra för M. Tentamen

TMV166 Linjär Algebra för M. Tentamen MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn

Läs mer

Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9

Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:

Läs mer

Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I

Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner) Elias Rudberg

Läs mer

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(

0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )( Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A

Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen

Läs mer

Laboration 1. Ekvationslösning

Laboration 1. Ekvationslösning Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.

Läs mer

Matematik: Beräkningsmatematik (91-97,5 hp)

Matematik: Beräkningsmatematik (91-97,5 hp) DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum

Läs mer

Linjär algebra F1 Ekvationssystem och matriser

Linjär algebra F1 Ekvationssystem och matriser Information Ekvationer Ekvationssystem Matriser Linjär algebra F1 Ekvationssystem och matriser Pelle 2016-01-18 Information Ekvationer Ekvationssystem Matriser kursfakta hemsida frågelåda Fakta om Linjär

Läs mer

Laboration 2. Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. x = 1±0.01, y = 2±0.05.

Laboration 2. Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. x = 1±0.01, y = 2±0.05. Laboration 2 Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. 1 Störningsräkning 1 Betrakta funktionen f(x,y) = e yx2. Värdena på x och y är givna av x =

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010 SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA3 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 7 januari 03 Examinator: Karl Lundengård Skrivtid:

Läs mer

Tentamen i Matematik 1 DD-DP08

Tentamen i Matematik 1 DD-DP08 Tentamen i Matematik DD-DP08 (Kursnummer HF90) 2009-03-2, kl. 3:5-7:00 Hjälpmedel: endast bifogat formelblad. Till samtliga inlämnade uppgifter fordras fullständiga lösningar. Svaren ska alltid förkortas

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

15 februari 2016 Sida 1 / 32

15 februari 2016 Sida 1 / 32 TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Test 1 2009.09.14 08.30 09.30 Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på 073 763 27 88 Övriga anvisningar: Skriv läsbart.

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska

Läs mer

Laboration 1: Linjär algebra

Laboration 1: Linjär algebra MALMÖ HÖGSKOLA Centrum för teknikstudier MA119A VT 2010, Yuanji Cheng Viktigt information om labb Vid laborationen gäller följande: 1. Labben görs i grupp av två studenter, och redovisningsuppgifterna

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden

x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden 24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,

Läs mer