ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
|
|
- Helena Gustafsson
- för 6 år sedan
- Visningar:
Transkript
1 FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO) Termin då du först registrerades på kursen 1 : Utbildningsprogram (eller liknande): Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter Detta blad skall ifyllas även om ingen uppgift behandlats Uppgifterna skall lösas I BIFOGAT svarsformulär. Använd INTE penna med röd färg. Uppgift Löst (kryssa) Poäng Mål 1-4 Lärarens kommentarer Summa Betyg 2 1 Tentamen rättas INTE om det saknas registrering på kursen. 2 Om möjlighet till bonuspoäng finns till tentamen visas slutresultatet inkl bonuspoäng i studentportalen efter att resultatet rapporterats till uppdok.
2 Tentamen i: Beräkningsvetenskap I (1TD393 DEMO) Skrivtid: 32 maj 4711 kl (senast) Allianshallen OBS! 3 timmar! Hjälpmedel: Godkänd litteratur: Ingen. Endast penna, radergummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling. Övrigt: Uppgifterna måste vara välskrivna, med alla ingående tankesteg redovisade. Endast svar på förtryckt svarsblankett beaktas. Observera att tentamen rättas baserat på kursmål. Totalt poängantal: 0 Mål: 1 Nyckelbegrepp Visa förtrogenhet med nyckelbegrepp som ingår i kursen 2 Algoritmer Visa förtrogenhet med de algoritmer som ingår i kursen 3 Analys Visa förtrogenhet med de analysförfaranden som ingår i kursen 4 Programmering Visa elementär förtrogenhet med programmering (mer avancerad programmering görs i grupp och framför dator) Uppgift 1: Integraler 3 1a Vid integration av en funktion f(x) från a till b med trapetsformeln erhålls svaret för steglängd h = 0.5. Vi gör nu tankeexperimentet att vi känner till det korrekta svaret och låter det vara exakt 150. Felet i vår beräkning är i så fall 0.1. Ungefär vilket fel vid motsvarande beräkning med steglängden h = 0.25 skulle du då förvänta dig (funktionsfelet antas vara försumbart)? Motivera med formel ty felet minskar med ungefär en faktor fyra vid halverad steglängd när trapetsmetoden används. Formel: Felet: R = b a 12 h2 f (ξ) Beräkning: 0.1/4 = b Om man vill säga att felet i Simpsons formel går snabbare mot noll än felet i trapetsformeln, kan man uttrycka sig som att Simpsons formel har högre... än trapetsformeln. Vilket är det sökta begreppet? Det sökta begreppet är noggrannhetsordning. Uppgift 2: Icke-linjära funktioner 3 2a Skriv ekvationen x+x 2 = e x på en form som lämpar sig om du vill beräkna x med Newton- Raphsons metod. f(x) = x+x 2 e x ger att vi söker det x så att f(x) = 0 2b Antag att x 0 = 1. Beräkna x 1 med hjälp av en iteration med Newton-Raphson metod.
3 Beräkning: f (x) = 1+2x e x x 1 = e 1+2 e = c Toleransen är (dvs 1 decimals noggrannhet). Kontrollera om det behövs fler iterationer för att noggrannhetskravet ska uppfyllas (dessa behöver i så fall inte utföras av dig). Det behövs fler iterationer. Beräkning: Det absoluta felet är ungefär x 1 x 0 = = vilket Noggrannhetskravet är således inte uppfyllt. Uppgift 3: 3a Nyckelbegrepp Några nyckelbegrepp i den här kursen är diskretiseringsfel, maskinepsilon, underflow, overflow, iteration, konditionstal, noggrannhetsordning, adaptivitet. Nedan ser du några utskrifter från Matlab (delvis tagna från en av laborationerna i kursen). För var och en av dessa, ange ett nyckelbegrepp som är relaterat till det du ser och förklara också på vilket sätt det är relaterat. Observera att du enbart ska använda ett nyckelbegrepp per exempel. >> a = 1e-10; b = 1e-26; >> a+b ans = e-10 Maskinepsilon. I förhållande till är så litet att precisionen (antal värdesiffror) inte räcker till. Omskrivet är additionen ( ) och vi vet att maskinepsilon, ǫ M är det minsta tal som kan adderas till ett för att få ett resultat större än ett. Således drar vi av ovanstående slutsatsen att ǫ M > b >> x= A\b; Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = e-17. Begreppet är konditionstal. Matlab varnar för att matrisen är illakonditionerad och resultatet av beräkningen därför osäker. Uppgift 4: Linjära ekvationssystem En LU-faktorisering av en matris A har gett följande resultat L = 3/4 1 0 U = P = 1/4 3/ Antag att vi har högerledet b = Lös systemet Ax = b genom att använda resultatet av LU-faktoriseringen. Du ska alltså visa att du behärskar algoritmen för att lösa ekvationssystem givet en LU-faktorisering. 6 x =
4 Beräkning: Beräkna x genom att lösa L U x = P b. Ansätt y = U x. Då kan vi lösa ekvationen i två steg, först beräkna y ur L y = P b(framåtsubstitution) och därefter använda y för att beräkna x i U x = y (bakåtsubstitution). Alltså: 1. Beräkna P b = = 2. Framåtsubstitution: Beräkna y 1 ur 1y 1 +0y 2 +0y 3 = 4 ger y 1 = 4. Därefter, y 2 +0y 3 = 1 ger y 2 = 4. Sista raden ger y 3 = 2 ger y 3 = Bakåtsubstituon ger x: Först x 3 ur 0x 1 +0x 2 +1x 3 = 6 ger x 3 = 6. Därefter x 2 ur 0x 1 +4x = 4 ger x 2 = 1. Sist beräknas x 1 ur 4x = 4 ger x 1 = Uppgift 5: Programmering 5a Följande program ska beräkna ett betygsmedelvärde, där filen betyg innehåller betygsvärden i en matris v. Raderna har blivit omkastade. Ange en korrekt radnummerordning antal = length(v); betygsumma = betygsumma + v(i); load betyg disp( Medelbetyg: ); betygsumma = 0; for i = 1:antal end disp(betygsumma/antal); Ordningen är dvs utskrivet: load betyg disp( Medelbetyg: ); antal = length(v); betygsumma = 0; for i = 1:antal betygsumma = betygsumma + v(i); end disp(betygsumma/antal); 5b I programmet ovan finns bl.a. följande rad: disp( Medelbetyg: ); Vilken eller vilka rader i programmet måste stå efter denna rad för att programutskriften ska bli tydlig? endast följande rad: disp(betygsumma/antal); Uppgift 6: Sjön Tämnaren Max målbetyg: 5 4 I en utredning om sjön Tämnaren i nordvästra Uppland mäter du sjödjupet i ett tvärsnitt av sjön där den är som bredast. Mätningen går till så att du åker båt längs en rät linje från ena stranden av sjön till den andra. På olika ställen längs vägen mäter du sjödjupet med ekolod. Låt x 0 = 0 vara koordinaten för vänstra stranden, x n koordinaten för högra stranden och x j,j = 1,...,n 1, koordinaterna för mätpunkterna. Mätvärdet vid punkten x j betecknar vi med d j. Vid de två strandpunkterna är djupet noll. Djupmätningarna kan av praktiska skäl inte göras med helt jämna mellanrum i x-led, utan avståndet mellan
5 intilliggande mätpunkter varierar. Skriv nu ett program i Matlab, som beräknar arean av det aktuella tvärsnittet av sjön genom att använda någon av de beräkningsalgoritmer som har ingått i kursen. Samtliga mätvärden ska utnyttjas. I ditt program ska du förutsätta att x- och d-värdena finns lagrade i två vektorer x respektive d, som finns sparade i filen measurements.mat. I den här uppgiften får du högre poäng om du själv formulerar beräkningsalgoritmen i Matlab, lägre poäng om du använder ett inbyggt Matlab-kommando för algoritmen. För full poäng krävs dessutom att du argumenterar för varför den algoritm du valt är den lämpligaste i detta fall, bland de algoritmer som ingått i kursen. Det blir inget avdrag för rena matlabfel, så länge det framgår att programmet i princip är korrekt. En lösning motsvarande mål 2, betyg 4, ska i princip innehålla följande: Beräkningen av tvärsnittsarean är detsamma som beräkning av integralen: xn x 0 d(x)dx där d(x) är djupet vid position x. Denna integral kan beräknas numeriskt med användning av de givna mätvärdena. Vi väljer att göra detta med trapetsformeln. Eftersom mätpunkterna ligger med ojämna mellanrum, så måste vi tillämpa trapetsformeln på varje delintervall för sig och sedan summera resultaten. En lösning som därtill motsvarar mål 2, betyg 5 innehåller en argumentation i stil med nedanstående: De två metoder för numerisk kvadratur som har ingått i kursen är trapetsformeln och Simpsons formel. Simpsons formel förutsätter att det åtminstone är lika avstånd mellan punkterna i varje dubbelintervall. Detta villkor är inte uppfyllt i det aktuella fallet. Trapetsformeln går däremot att tillämpa här, på det sätt som beskrivits ovan. Trapetsformeln är därför den enda av de metoder som ingått i kursen, som går att använda i detta fall. En lösning som dessutom motsvarar mål 4, betyg 3 innehåller ett program i stil med: load measurements.mat area = trapz(x,d) disp( Area: num2str(area) kvadratmeter ) En lösning som motsvarar mål 4, betyg 4 innehåller i stället ett program i stil med: load measurements.mat n = length(x); area = 0; for i = 1:n-1 area = area + 0.5*(x(i+1)-x(i))*(d(i+1)+d(i)); end disp( Area: num2str(area) kvadratmeter ) Uppgift 7: Integral av mätvärden Max målbetyg: Antag att du är inblandad i ett projekt där det ingår att lösa en integral b f(t)dt, där a funktionen f(t) inte är känd. Istället har man har mätvärden tillgängliga enligt: t t 1 t 2 t n f(t) f(t 1 ) f(t 2 ) f(t n ) Det mätinstrument som används vid mätningarna ger en noggrannhet på två korrekta decimaler. Eftersom mätningar är komplicerade och dyra att göra vill man ha så få mätpunkter som möjligt. Å andra sidan vill man att noggrannheten ska vara så bra som möjligt. I projektet vill man förutom själva beräkningar av integralen därför också veta hur noggrann lösningen är. Företaget vill nu ha en algoritm eller skiss för hur man kan lösa problemet. Du kan t ex använda en matlabliknande kod i din skiss (inga avdrag görs för rena matlabfel). Företaget vill också veta vad man kan säga om noggrannheten i lösningarna och hur man går tillväga för att få fram noggrannheten. De vill också veta hur man på billigast möjliga sätt går tillväga för att förbättra noggrannheten om det krävs. När du utför ovanstående är det viktigt att du använder relevanta begrepp (på ett korrekt sätt).
6 Algoritm: Eftersom det är dyrt med mätningar är Simpsons metod ett bra alternativ. Å andra sidan sätter den metoden krav på att det är jämnt antal intervall och steglängden måste vara lika över varje dubbelintervall. Om detta är möjligt praktiskt bör man välja Simpsons metod, i annat fall får man använda Trapets (diskussion liknande detta ska ingå för betyg 5). Den övergripande algoritmen/strategin kan t ex vara att inledningsvis beräkna integralen med få punkter. Om man använder Simpson blir det minsta möjliga antalet 5 punkter (4 intervall) om man även ska kunna använda feluppskattning. Beräkna sedan integralen S(h) och uppskatta diskretiseringsfelet R(h) med Richardsonextrapolaton. För att förbättra noggrannheten bör man även addera feluppskattningen, S(h) + R(h). Om det inte uppfyller toleransen (för tolerans, se under Analys) kan man beräkna ungefärligt antal ytterligare punkter som krävs med hjälp av metodens noggrannhetsordning, n.o. 4 om man använder Simpsons metod. Man får sedan göra de mätningar som krävs, dvs göra de mätningar som krävs för att uppnå tillräcklig noggrannhet (här är det bra om man kan utnyttja de punkter som redan finns, så det kan vara bra att tänka i termer av intervallhalveringar), sedan upprepa beräkningarna med den kortare steglängden. För säkerhets skull bör man även göra feluppskattning. Observera att det inte här fungerar bra med en adaptiv metod eftersom den automatiska förfiningen kräver att man har många punkter uppmätta (och det kan då bli onödigt många mätningar). För betyg 5 ska en övergripande algoritm liknande ovanstående finnas, enbart val av Simpsons metod ger inte fullt betyg. Val av Smpson/trapets inklusive diskussion ger betyg 4. Analys: Till att börja med har vi ett funktionsfel som här är ganska stort. Det blir E f (t n t 1 ) Beräkningarna kan aldrig bli bättre än detta och det finns inga skäl att ha ett diskretiseringsfel som är betydligt bättre än detta. Man kan därför t ex använda en tolerans för diskretiseringsfelet på exempelvis tol Det totala felet i beräkningarna blir som högst R(h) + E f där R(h) kan uppskattas med Richardsonextrapolation. För att beräkna hur många ytterligare mätningar man behöver göra kan man använda sig av metodens noggrannhetsordning. Om man använder använder Simpsons metod medför varje halvering av stegläng att felet minskas med en faktor 16. På det sättet kan man räkna ungefär hur många ytterligare halveringar som krävs. Begrepp: Begrepp som ska ingå är noggrannhetsordning, diskretiseringsfel, funktionsfel och för fullt betyg ska de kopplas samman med problemet och med varandra enligt ovan. Programmering: För betyg 5 ska matlabliknande kod för algoritmen ovan finnas, inklusive Simpsons metod (om den används).
7 Obligatorisk svarsblankett: Beräkningsvetenskap I (1TD393 DEMO) I rutan Svar anger du det slutliga värdet på frågan. I rutan Formel anger du de formler du hänvisar till för din beräkning (inte hur man deriverar polynom, men sådant du lärt dig i kursen, inklusive från formelsamlingen) I rutan Beräkning visar du hur du kommit till svaret, med tal instoppade i formler, och de beräkningssteg och/eller motiveringar som behövs för att göra beräkningen förståelig för läraren. Om någon/några av rutorna saknas för en uppgift men du ändå känner att du vill redovisa något som skulle passat i den rutan, redovisa det istället i en av de rutor som finns. Använd sunt förnuft. Rutornas storlek är anpassade för att du ska kunna svara bekvämt. De ger en viss ledtråd om hur mycket du förväntas skriva. Om du i ett undantagsfall inte får plats med ett svar, markera detta tydligt, och komplettera på den sista, blanka, sidan i häftet. Uppgift Integraler 1a: 3 Formel: Beräkning: Uppgift Integraler 1b: 3 Uppgift Icke-linjära funktioner 2a: 3 Uppgift Icke-linjära funktioner 2b: 3 Beräkning: Uppgift Icke-linjära funktioner 2c: 3 Beräkning: Uppgift Nyckelbegrepp 3a:
8 Uppgift Nyckelbegrepp 3b: Uppgift Linjära ekvationssystem 4: Beräkning: Uppgift Programmering 5a: Uppgift Programmering 5b:
9 Uppgift Sjön Tämnaren 6: Max målbetyg: 5 4
10 Uppgift Integral av mätvärden 7: Max målbetyg:
11 Undantagsfall som inte fick plats kompletteras här
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!)
Facit Tentamen i Beräkningsvetenskap I (1TD393 - nya versionen, 5hp!) Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Tentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Tentamen i Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Tentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: 9 januari 2017 kl 08 00 11 00 OBS! 3 timmar! Hjälpmedel: Endast penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Sammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap II Tentamen i Beräkningsvetenskap II, 5.0 hp, 2017-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA3 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 7 januari 03 Examinator: Karl Lundengård Skrivtid:
Matematik: Beräkningsmatematik (91-97,5 hp)
DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum
KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Introduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
FÖRSÄTTSBLAD TILL TENTAMEN
Institutionen för informationsteknologi INSTRUKTIONER Kontrollera att du fått rätt tentamensuppgifter! Detta blad skall alltid inlämnas ifyllt även om ingen uppgift behandlats. Varje uppgiftslösning skall
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Icke-linjära ekvationer
stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar
NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Interpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion
Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Rapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
Numerisk Analys, MMG410. Lecture 12. 1/24
Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner) Elias Rudberg
Introduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 1 september, 2014 Lärare Emanuel Rubensson Outline 1 Vad är beräkningsvetenskap? 2 Information
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Tentamen: Numerisk Analys MMG410, GU
Tentamen: Numerisk Analys MMG41, GU 17-6- 1. Ge kortfattade motiveringar/lösningar till nedanstående uppgifter! Ett korrekt svar utan motivering ger inga poäng! a) Antag att vi arbetar med fyrsiffrig decimal
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
f (a) sin
Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Uppgift 1 R-S. Uppgift 2 R-M. Namn:...
2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag 26-3-27 Obs! Muntliga delen redovisas vid ett miniseminarium. Notera!
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Gruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003
Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN8 09-03-30 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN7 (GNM kap 4, 6.3)! Bandmatrismetoden/Finita differensmetoden!
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade