Datoraritmetik. Från labben. Från labben. Några exempel
|
|
- Gustav Bergström
- för 6 år sedan
- Visningar:
Transkript
1 Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow, diskretisering Beräkningen A -1 A blev inte riktigt enhetsmatrisen Från labben Numerisk beräkning av derivata med Några exempel Uttryck exakt i Matlab Se lab Hur mäter man fel? Det exakta talet betecknas x Samma tal men som innehåller fel betecknas Felen kan t ex vara avrundningsfel eller mätfel Felet kan mätas Om x är en vektor blir det istället kallas för norm. Mer om detta senare. Hur mäter man fel? Exempel från labben: Du köper varmkorv en lördagkväll. Den kostar 15 kr, men av misstag betalar du 20 kr. Du köper en ny bil för kr, men betalar kr och bryr dig inte om växeln. Man förlorar lika mycket, men det känns sannolikt mindre i det andra fallet. Relativt fel upplevs ofta som mer korrekt än absolut fel 1
2 Representation av tal i dator Alla tal lagras i ett begränsat antal bitar i minnet, vanligen i binär form. Exempel: betyder ( ) 2 = = (92) 10 Lagring i dator Heltal Inga problem. Heltal upp till en viss storlek (beroende på antalet bitar) lagras exakt. Reella tal Kan inte lagras exakt utan måste avrundas. Representationen av reella tal kallas flyttalsrepresentation och talen kallas flyttal. Exempel (bas β = 10) Reella talet x= kan skrivas x = = = = ( ) 10-2 d 0 d 1 d 2 d 3 β kallas mantissa m bas β Observation: 0 d i < 10 och 1 m < 10 Flyttal flytande decimalpunkt Slutsats Reellt tal x kan skrivas (i exakt representation) x = m β e där β är den bas som används, e är exponenten och m är mantissan. För mantissan gäller att m = ±(d 0.d 1 d 2 ) = = ±(d 0 β 0 + d 1 β -1 + d 2 β -2 + ), 0 d i < β Om man flyttar decimalpunkten så att första termen d 0 0 kallas detta normaliserad form. Då blir 1 m < β Hur ska reella talet kunna representeras i datorns begränsade antal bitar? Exponenten kan lagras exakt upp till en viss storlek Mantissa måste kapas på något sätt eftersom oändligt antal siffror görs genom avrundning När det reella talet x lagras i datorn görs det som flyttal, betecknas fl(x) Exemplet igen Antag plats för 4 tal i datorns mantissa x= ger fl(x) = = = ( ) 10-2 Slutsats Ett flyttal fl(x) kan skrivas (i normaliserad form) där talet 0 representeras på särskilt sätt Ett flyttalssystem karaktäriseras av (β,p,l,u) fl(x) = ˆm β e, ˆm = ±(d 0.d 1 d 2,,d p 1 ) 1 d i < β, d 0 0, l e u p kallas precision, mantissan rundas av Exponenten e är heltal och lagras exakt inom undre och övre gräns, l och u. Lagras: och e. β är fixt och lagras ej. Vanligen β = 2 (β,p,l,u) = (2,3,0,2) Mantissan kan anta följande positiva värden (motsvarande för negativa tal): För olika värden på exponenten e fås då min max 2
3 e=0 underflow e=1 e=2 overflow Flyttalen ej jämnt representerade större tal ger glesare representation När ett reellt tal ska lagras i datorns minne, avrundas det och hamnar på närmaste linje på tallinjen. Ex) talet 5.45 blir fl(5.45) = * * + + * + Några tester : fl( fl(2.2)+fl(4.4) ) = fl( ) = fl(6.0) = 6.0 Exakt: = / 6.6 = = 9.09% ( ) - 1.2: fl(fl( fl(2.2)+fl(4.4) ) - fl(1.2)) = fl( ) = fl(4.75) = 5.0 Exakt: = / 5.4 = = 7.41% ( ): fl( fl(2.2)+fl(fl(4.4) - fl(1.2))) = fl( 2.0+fl( ))= fl(2.0+fl(2.75))=fl( )= = fl(5.0) = 5.0 Exakt: = / 5.5 = = 9.09% Samma beräkning, men i annan ordning gav olika svar 3.3+( ): fl( fl(3.3) + fl(fl(4.5) - fl(1.2))) = fl( fl( )) = fl(3.5 + fl(3.75))=fl( ) = Inf pga overflow Exakt: 6.6 Om man hamnar under min kan man släppa på normaliseringskravet Mantissan kan anta följande positiva värden subnormala tal Ger en liten extraskala under min-gränsen, kallas subnormalt tal I Matlab: realmin anger minsta normaliserade tal, går att hitta mindre subnormala tal 3
4 Hur stort kan felet bli? Vi tittar först enbart på mantissan: Maximalt fel i mantissan då talet x ligger exakt mitt emellan två tal i. Mantissan består i exemplet av 1, 1.25, 1.5, Maximalt fel blir då 0.125, dvs m Allmänna fallet gäller Stämmer det för vårt flyttalssystem? Hur stort kan felet bli? Felet i hela talet fl(x) : Absoluta felet fl(x) x = ˆmβ e mβ e = ( ˆm m)β e 1 2 β ( p 1) β e Felet beror av storleken på x glesare representation högre upp på flyttalslinjen. Relativa felet fl(x) x = ˆmβ e mβ e 1 β ( p 1) e β x m β e 2 m β e Test: Stämmer! Beror inte på talets storlek! Hur stort kan felet bli? Felet i hela talet fl(x): Alltså, vid avrundning gäller fl(x) x ε, där ε x M M = 1 2 β1 p Talet ε M kallas maskinepsilon och är en maskinberoende konstant Maskinepsilon kan även definieras som det minsta tal ε så att fl(1+ ε ) >1 I Matlab ger kommandot eps maskinepsilon, se lab Var finns maskinepsilon i flyttalssystemet? underflow underflow ε M - maximala relativa felet mellan ett tal x och närmaste punkt på tallinjen (dvs storleken på relativt storleken på talet x) Ju tätare tallinje ju mindre ε M ε har inget med underflow eller overflow, dvs M hur stora/små tal som kan representeras, att göra Avrundningsfel i beräkningsprocesser? Maskinepsilon anger maximalt fel vid lagring av ett tal Beräkningsprocesser, t ex Gausselimination eller A -1 A innehåller mängder av beräkningar och lagringar, inklusive beräkning med tal som tidigare avrundats den sammanlagd effekten av felen brukar vara lite sämre än ε M Vanligen avrundningsfelen små i förhållande till alla andra fel (diskretiseringsfel, mätnoggrannhet etc) Kancellation Problem vid subtraktion av nästan lika tal: Ex) Antag två tal med blandat avrundningsskräp långt ute i decimalerna. får beteckna avrundningsskräp fl( ) = = fl( ) = k Avrundningsfel har nästan helt tagit över. Detta kallas kancellation. 4
5 Kancellation Exempel) Från lab: Stora fel när h blir litet Stora fel när q blir litet Kan (i vissa fall) lösas genom att använda andra formler eller omskrivning fungerar bättre (uttrycket ovan förlängt med konjugatet) Några konsekvenser Ej meningsfullt med tester av typen if (x==y) end om x och y är flyttal. Istället if abs(x-y)< tol eller if abs(x-y)< tol*abs(x) Undvik subtrahera nästan lika stora tal Summera om möjligt termer i växande ordning (t ex när man summerar serier). Under 60- och 70-talen hade varje datortillverkare sitt eget flyttalssystem En flyttalsstandard utvecklades under tidigt 80-tal och följdes av tillverkare som Intel och Motorola Utvecklat av arbetsgrupp hos Institute for Electrical and Electronics Enngineerings (IEEE) IEEE-standarden har tre viktiga krav: Konsistent flyttalsrepresentation Korrekt avrundningsaritmetik Konsistent hantering av exceptionella situationer Tre standartyper av flyttal: Single precision (enkel precision) Double precision (dubbel prec) Extended precision (utökad prec) IEEE enkel precision ± e 1 e 2 e 8 d 0 d 1 d 2 d 22 tecknet 1 bit, exponent 8 bitar, mantissa 23 bitar => totalt 32 bitar IEEE dubbel precision ± e 1 e 2 e 11 d 0 d 1 d 2 d 51 tecknet 1 bit, exponent 11 bitar, mantissa 52 bitar => totalt 64 bitar Hidden bit Behöver d 0 lagras? Nej, Gäller alltid att d 0 =1. Man vinner då en bit, en s k hidden bit. Får istället IEEE enkel precision IEEE dubbel precision ± e 1 e 2 e 11 d 1 d 2 d 52 ± e 1 e 2 e 8 d 1 d 2 d 23 (β,p,l,u) i IEEE-standard IEEE single (2,24,-126,128) IEEE double (2,53,-1022,1024) Obs utnyttjat hidden bit! Maskinepsilon blir IEEE single ε M = IEEE double ε M = IEEE extended ε M =
6 Diskretiseringsfel IEEE definierar fem olika exceptions Invalid operation, t ex (Not a Number), 0 => ges värdet NaN Division med 0 => sätt till ± (dvs Inf i Matlab) overflow => sätt till ± eller största flyttal underflow => sätt till 0 (eller subnormalt tal) Korrekt avrundning av reella tal (inte exceptionell situation egentligen) För den som vill veta mer Förutom avrundningsfel finns även diskretiseringsfel Exempel) Numerisk derivering från lab När h blir mindre borde approximationen bli bättre mindre diskretiseringsfel Här dominerar avrundningsfel Här dominerar diskretiseringsfel Diskretiseringsfel Numerisk derivering Tolkning: Det finns flera formler för derivering: För stora h dominerar diskretiseringsfelet, man kan bortse från avrundningsfelet För små h dominerar avrundningsfelet Avrundningsfelet blir stort i det här fallet pga kancellation i täljaren för små h division med litet tal förstärker felet i täljaren Avrundningsfelet uppför sig kaotiskt, medan diskretiseringsfelet ger en jämn och snygg kurva y y f (x+h) f (x) h f (x+h) f (x h) 2h Framåtdifferens (se lab) Centraldifferens f (x+2h)+8 f (x+h) 8 f (x h)+ f (x 2h) y 12h Fempunktsformel Numerisk derivering Samma test som i labben: Diskretiseringsfel och avrundningsfel Sammanfattning Vilken metod ska man välja? Varför? Diskretiseringsfelet spelar vanligen den dominerande rollen. Vanligt att man helt kan bortse från avrundningsfelen. Avrundningsfelet får konsekvenser i vissa fall, t ex vid kancellation. Exakt noll existerar inte i praktiken för flyttal. Diverse avrundningar gör att tal som kan anses vara lika ändå skiljer sig ute i decimalerna Ett relativt fel i sorleksordningen ε M efter beräkning med flyttal är enbart slumpmässigt skräp 6
n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas
Datoraritmetik Beräkningsvetenskap I/KF Kursboken n Kap 4., 4., (4.3), 4.4, 4. n I kap 4.3 används Taylorutvecklingar. Om du ännu inte gått igenom detta i matematiken, kan du oppa över de delar som beandlar
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik
7 november 2014 Sida 1 / 21
TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av
Sammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Föreläsning 8: Aritmetik och stora heltal
2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Feluppskattning och räknenoggrannhet
Vetenskapliga beräkningar III 10 Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare.
Kapitel 2. Feluppskattning och räknenoggrannhet
Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare. Liksom vid beräkningar för hand
Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?
Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom
a n β n + a n 1 β n a 0 + a 1 β 1 + a 2 β , x = r β e ; 0.1 r < 1; e = heltal.
De iakttagna fenomenen beror på avrundningsfel, och vi skall därför studera talframställningen i datorer. Vid beräkningar för hand är det vanligt att man uttrycker tal i tiopotensframställningen, men i
Föreläsning 8: Aritmetik och stora heltal
DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2007-11-06 Skribent(er): Martin Tittenberger, Patrik Lilja Föreläsare: Per Austrin Denna föreläsning
Datorsystemteknik DVG A03 Föreläsning 3
Datorsystemteknik DVG A03 Föreläsning 3 Datoraritmetik Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Hur stora tal kan vi få med N bitar? Största
Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation
Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson!
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekventiell exekvering av instruktionerna.
Fel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
F2 Datarepresentation talbaser, dataformat och teckenkodning
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Jonas Wisbrant Datarepresentation I en dator lagras och behandlas all information i form av binära tal ettor och nollor.
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Digital- och datorteknik
Digital- och datorteknik Föreläsning #24 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Allmänt Behovet av processorinstruktioner för multiplikation
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Flyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar.
FLYTTAL REAL Flyttal används i datorsystem för s k flytande beräkning vilket innebär att decimalkommat inte har någon fix (fast) position. Flyttal består av 2 delar (mantissa och exponent). När ett datorsystem
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Tentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
Föreläsning 8: Aritmetik I
DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik I Datum: 2009-11-03 Skribent(er): Andreas Sehr, Carl Bring, Per Almquist Föreläsare: Fredrik Niemelä 1 Flyttal Att representera
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, numerisk metod, diskretisering maskinepsilon,
IE1205 Digital Design: F6 : Digital aritmetik 2
IE1205 Digital Design: F6 : Digital aritmetik 2 Talrepresentationer Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers)
2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Linjära ekvationssystem
Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att
Datoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod
inär addition papper och penna metod Dagens föreläsning: Lärobok, kapitel rbetsbok, kapitel Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man kan koda om negativa binära
Binär addition papper och penna metod
EDA4 - Digital och Datorteknik 9/ EDA 4 - Digital och Datorteknik 8/9 Dagens föreläsning: Aritmetik, lärobok kapitel 6 Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar
Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165
Maskinorienterad Programmering - 2010/2011. Maskinorienterad Programmering 2010/11. Maskinnära programmering C och assemblerspråk
Maskinorienterad Programmering 2010/11 Maskinnära programmering C och assemblerspråk Ur innehållet: 32-bitars aritmetik med 16-bitars processor IEEE754 flyttal Maskinnära programmering - C 1 CPU12, ordlängder
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 1 Felanalys Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur : 1
4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Datorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d
Datorsystem Övningshäfte Senast uppdaterad: 22 oktober 2012 Version 1.0d Innehåll Innehåll i 1 Introduktion 1 1.1 Errata............................................... 1 2 Datorns grunder 2 2.1 Övningsuppgifter.........................................
Approximation av funktioner
Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner
Linjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Linjära ekvationssystem
Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på
Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
IE1204 Digital Design
IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM
TAL OCH RÄKNING HELTAL
1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot
Interpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1
AD-DA-omvandlare Mätteknik Ville Jalkanen ville.jalkanen@tfe.umu.se Inledning Analog-digital (AD)-omvandling Digital-analog (DA)-omvandling Varför AD-omvandling? analog, tidskontinuerlig signal Givare/
a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio
Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från
6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print
Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Exempel på tentafrågor på boken Lunell: Datalogi-begreppen och tekniken Obs! Andra frågor än dessa kan komma på tentan! 1. Konvertera talet 186 till
Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Gruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003
Digital- och datorteknik
Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
SVAR TILL TENTAMEN I DATORSYSTEM, HT2013
Rahim Rahmani (rahim@dsv.su.se) Division of SAS Department of Computer and Systems Sciences Stockholm University SVAR TILL TENTAMEN I DATORSYSTEM, HT2013 Tentamensdatum: 2013-10-30 Tentamen består av totalt
Föreläsning 3.1: Datastrukturer, en översikt
Föreläsning.: Datastrukturer, en översikt Hittills har vi i kursen lagt mycket fokus på algoritmiskt tänkande. Vi har inte egentligen ägna så mycket uppmärksamhet åt det andra som datorprogram också består,
kl Tentaupplägg
Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer
Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
Tisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Digital- och datorteknik
Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k
ÖH kod. ( en variant av koden används i dag till butikernas streck-kod ) William Sandqvist
ÖH 8.4 7-4-2-1 kod Kodomvandlare 7-4-2-1-kod till BCD-kod. Vid kodning av siffrorna 0 9 användes förr ibland en kod med vikterna 7-4-2-1 i stället för den binära kodens vikter 8-4-2-1. I de fall då en
Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =
n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64
Arbetsblad 1:10 Avrundning Avrunda till heltal 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Avrunda till tiotal 3 a) 88 b) 19 c) 164 4 a) 144,8 b) 347,5 c) 29,39 5 a) 43,5 b) 163,99 c) 496,1
DOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h
DOP-matematik Copyrigt Tord Persson Gränsvärden Uppgift nr 1 f(x) x². Gör denna värdetabell komplett genom att i tur oc ordning ersätta x i funktionen med de olika talen / uttrycken i tabellen. Första
5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor
5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
översiktskurs (5DV031)
Programmeringsteknisk översiktskurs (5DV031) Föreläsning 10 kallin@cs.umu.se Innehåll Ändlig aritmetik Fler exempel på funktioner med arrayer som parametrar Läsanvisningar: Dessa bilder, kapitel 11 kallin@cs.umu.se
Matematik 3c Kap 2 Förändringshastighet och derivator
Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
Tentamen: Numerisk Analys MMG410, GU
Tentamen: Numerisk Analys MMG41, GU 17-6- 1. Ge kortfattade motiveringar/lösningar till nedanstående uppgifter! Ett korrekt svar utan motivering ger inga poäng! a) Antag att vi arbetar med fyrsiffrig decimal
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på