Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering

Storlek: px
Starta visningen från sidan:

Download "Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering"

Transkript

1 Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik och flyttal Standard flyttalsformatet: IEEE 754 binary 64 Avrundningsenheten eller maskinepsilon Avrundningsfelsanalys Varningar, konsekvenser, samt tumregler för numeriska beräkningar I laborationen ser vi hur avrundningsfel kan påverka resultatet vid simulering av en enkel populationsmodell Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (2 : 21) Felkällor Att approximera lösningar till matematiska problem med hjälp av datorer inducerar diverse fel Viktigt att skilja mellan diskretiseringsfel och avrundningsfel I denna kurs tittar vi inte på fel i indata/mätfel, vilka ofta är oundvikliga... Ex: Datorrepresentation av en bild Diskretiseringsfel: en spatiellt kontinuerlig bild rastreras till pixlar (exempelvis ) Avrundningsfel: endast ett fixt antal (exempelvis 2 24 vilket är ungefär 16.8 miljoner) färger att välja mellan för varje pixel Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (3 : 21)

2 Felkällor Vanligtvis dominerar diskretiseringsfelen I många fall kan avrundningsfelen försummas Även om avrundningsfel vanligtvis är små så är kan de både vara märkbara och irriterande i praktiska beräkningar med reella tal Uttryck Exakt värde i Matlab cos π/ e e-017 Dessutom så kan avrudningfel, i vissa exceptionella fall (som vi kommer att diskutera i detta tema) ha katastrofala följder Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (4 : 21) Binära tal I datorer lagras tal oftast i binär form: 4 bitar {}}{ ( 1101) 2 = = (13) 10 Naturliga tal lagras exakt i binär form Om vi har n bitar (Eng.: bits) så kan vi lagra tal upp till 2 n 1 Binära rationella tal: (0.1101) 2 = = = = (0.8125) 10 Observera: Talen 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 kan inte representeras exakt binärt! (Dessa tal har en oändlig decimalutveckling i basen 2) Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (5 : 21) Flyttal De flesta reella tal kan inte lagras exakt; de måste avrundas och begränsas I stort sett all hårdvara och mjukvara som produceras idag stödjer IEEEs standard för flyttalsartimetik IEEE 754 IEEE 754 antogs släpptes en uppdaterad version av standarden: IEEE Standarden ger en maskinoberoende modell för hur flyttalsartimetik ska fungera Matlab använder som standard flyttalsformatet IEEE binary 64 (double precision), det mest använda formatet för att lagra flyttal Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (6 : 21)

3 Flyttalsformetet IEEE 754 binary 64 Normaliserade flyttal lagras Alla nollskilda flyttal kan skrivas på formen x = ( 1) s (1 + f ) 2 e, där 0 f < 1 (mantissan, eller bråkdelen (Eng.: fraction)) representeras i binär form med 52 bitar e (exponenten) är ett heltal som uppfyller 1022 e 1023 (E = e largras med 11 bitar) 1 bit används för att lagra tecknet s (0 positiv, 1 negativ) Antalet bitar som används för att lagra f begränsar precisionen Antalet bitar som används för att lagra e begränsar omfånget Enbart f, E och s lagras; inte den inledande 1an ( gömd bit ) Talet 0 hanteras separat (E = f = 0 representerar talet 0) Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (7 : 21) Flyttalsformatet IEEE 754 binary 64 x = ( 1) s (1 + f ) 2 e, lagras med 1 bit för tecknet s, 11 bitar används för att lagra exponenten som E = e och 52 bitar representerar mantissan 0 f < 1 Totalt använder vi 64 bitar, eller 8 byte (1 byte = 8 bitar), för att largra ett flyttal tecken exponent mantissa Ex: En reell matris innehåller 10 6 tal; för att lagra denna matris behöver vi 8 MB minne (10 6 flyttal 8 byte/flyttal) Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (8 : 21) Maskinepsilon Antalet tecken (tal) i mantissan f begränsar flyttalssystemets precision IEEE 754 binary 64 använder 52 binära tecken för att lagra f Avstådnet mellan talet 1 och nästa representerbara tal kallas för maskinepsilon ɛ M ɛ M beror på vilket flyttalssystem som används; i IEEE 754 binary 64 är ɛ M = ( }{{} 1) 2 51 nollor ɛ M ger en bild av flyttalssystemets precision Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (9 : 21)

4 Avstånd mellan flyttal x = ±(1 + f ) 2 e, När e = 0, så är avståndet mellan två konsekutiva flyttal ɛ M. Ex: ( ) 2 ( ) 2 =( ) 2 När e = 1, så är avståndet mellan två konsekutiva flyttal 2ɛ M Generallt så är är avståndet mellan två konsekutiva flyttal 2 e ɛ M För en fix exponent är avståndet mellan konsekutiva flyttal konstant Avståndet mellan konsekutiva flyttal växer tillsammans med exponenten Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (10 : 21) Överspill (Overflow) och underspill (underflow) Betrakta tal på formen x = ±(1 + f ) 2 e där 1022 e 1023 Det största (till beloppet) representerbara flyttalet är x max = (2 ɛ M ) Försök att largra tal med x > x max medför överspill (Eng.: overflow); många program avslutas och lämnar felmeddelande när detta händer Det minsta (till beloppet) representerbara flyttalet med full precision är x min = Obs: x min är mycket mindre än ɛ M! Försök att lagra tal med x < x min medför underspill (Eng.: underflow); de flesta program fortsätter när detta händer, vissa program skriver ut en varning och sätter x = 0 och fortsätter därefter Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (11 : 21) Specialfall Vi har: x = ( 1) s (1 + f ) 2 e, där 1022 e 1023 Vi lagrar s, E = e och f Standarden IEEE 754 definierar följande specialfall E = 0 och f = 0 representerar noll subnormala flyttal eller gradvis underspill : E = 0 och f 0 betecknar flyttalet ±(0 + f ) , vilket möjliggör lagring av flyttal (med minskad noggrannhet) ner till De (utökade reella) talen + och (representeras av E = 2047 = ( ) 2 och f = 0) Symbolen icke-ett-tal (Eng.: not-a-number), eller NaN lagras med E = 2047 och f 0. NaN uppkommer vanligtvis som resultat av en icke väldefinierad operation som 0/0. Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (12 : 21)

5 Absolut och relativt fel x: exakt (reellt) tal ˆx: tal med fel (mätfel, avrundingsfel,... ) Absolut fel: x ˆx Relativt fel: x ˆx x (x 0) Om x är en vektor, används vektornormer för att uttrycka fel Absolut fel: x ˆx Relativt fel: där, exempelvis, x = ( n xi 2 i=1 ) 1/2 x ˆx x (x 0) (vi kommer att titta på fler vektornormer i nästa tema!) Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (13 : 21) Avrundningsfel Anta att ett givet reellt tal x approximeras av flyttalet fl(x) och att vi arbetar i IEEE 754 binary 64 x = ( 1)ŝ (1 + ˆf ) 2ê, (där ŝ {0, 1}, 0 ˆf < 1, och ê Z), eller x = 0 fl(x) = ( 1) s (1 + f ) 2 e, eller fl(x) = 0 (om x = 0) Hur stort är avrundingsfelet x fl(x)? Skissen nedan illustrerar flyttalen (och deras avstånd) i ett område som innhåller 2 n. ɛ M 2 n 1 ɛ M 2 n 1 ɛ M 2 n 1 ɛ M 2 n ɛ M 2 n fl(x)? fl(x)? x 2 n Således har vi, för varje meningsfull avrundning, att x fl(x) ɛ M 2ê Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (14 : 21) Avrundsningsstrategier Det finns många standarder för avrundning: avrunda uppåt (mot + ) avrunda nedåt (mot ) avrunda mot noll avrunda bort från noll avrunda till närmsta flyttal default avrundningsstrategin i IEEE 754 Vid avrundning till närmsta flyttal gäller x fl(x) 1 2 ɛ M 2ê Vid avrundning till närmsta flyttal, behöver vi en regel för att ta hand om fallet med två tal med samma avstånd (Ex: Vid lika, så avrundar Matlab så att den sista siffran i mantissan är 0) Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (15 : 21)

6 Avrundningsfel Konstatera att x = ( 1) s (1 + ˆf ) 2ê 2ê när x 0 Om vi avrundar till närmasta flyttal (och x 0) så kan vi begränsa det relativa felet x fl(x) x 1 2 ɛ M 2ê 2ê = 1 2 ɛ M Föjaktligen, när vi avrundar till närmsta flyttal: Det relativa felet i flyttalsapproximation av nollskilda tal begränsas av 1 2 ɛ M I synnerhet har vi att det relativa felet är oberoende av storleken på talet Observera: Vissa betecknar kvantiteten µ = 1 2 ɛ M för maskinepsilon eller avrundningsenheten (Eng.: unit roundoff) [Eldén, Wittmeyer Koch] Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (16 : 21) Avrundningsfel i praktiken Maskin epsilon är ett mått på den relativa noggrannheten hos ett lagrat flyttal Standarden IEEE 754 binary 64 ger en precision på ungefär 16 siffror (i basen 10) I praktiken utförs många flyttalsoperationer på tal som har blivit avrundade. Likväl är det ackumulerade relativa felet i sluttresultatet oftast inte mer än ett par storleksordningar över ɛ M I de flesta vall är avrundningsfelen mycket mindre än andra fel (diskretiseringsfel och mätfel)! Men det finns några förrädiska fall att se upp för! Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (17 : 21) Noggrannhetsförlust eller kancellering av signifikanta siffror Vid subtraktion av nästan lika tal: = Om båda talen i vänsterledet har 9 korrekta siffror, alltså att absolutfelet dessa tal begänsat av det relativa felet i talen i vänsterledet mindre än 10 8 det absoluta felet i högerledet är begränsat av 10 8 men det relativa felet i högerledet kan vara 10 2 Detta fenomen kallas noggrannhetsförlust eller kancellering av signifikanta siffror Ibland kan detta undvikas genom omskrivning. Ex: 1 + x 1 x = ( 1 + x 1 x)( 1 + x + 1 x) 1 + x + 1 x = 2x 1 + x + 1 x Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (18 : 21)

7 Konsekvenser och tumregler if x==y then... är inte ett bra test om x och y är flyttal som kan ha avrundats (exempelvis om de är resultat från olika beräkningar) Det är bättre att använda if abs(x-y) <= tolerance then... där tolerance är ett litet tal Undvik, om möjligt, subtraktion av nästan lika tal De associativa och distributiva lagarna gäller inte exakt för flyttal (vanligtvis inte särskilt viktigt) Vid beräkning av N n=1 s n, försök att börja med de minsta (till beloppet) talen Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (19 : 21) När är avrundsningsfel märkbara? Låt oss återvända till vårt första exempel. Datorrepresentation av en bild Diskretiseringsfel: en spatiellt kontinuerlig bild rastreras till pixlar, där varje pixel tilldelas en färg (Ex: tre tal mellan 0 och 1 som beskriver hur mycket rött, grönt och blått fägen har) Avrundningsfel: För varje pixel så avrundas talen som beskriver färg så att de kan lagras. Om vi exempelvis använder oss av flyttalsystemet IEEE 754 binary 64 för att representera färgerna, så kan avrundningsfelet försummas, diskretiseringsfelet dominerar totalt! I det flesta fall, där beräkningar utförs, så behöver vi inte bekymra oss om avrundningsfel Två viktiga undantag! Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (20 : 21) När är avrundsningsfel märkbara? 1. Känsliga problem Lösningen till matematiska problem kan ibland vara mycket känsliga för förändringar i indata: små förändringar i data medför stora förändringar i lösningen. De små fel som som introduceras vid avrundningen av indata kan därför orsaka märkbara förändringar i lösningen. Sådana problem kallas illa-konditionerade eller i vissa extrema fall illa-ställda 2. Numeriskt instabila algoritmer Vissa numeriska algoritmer är mycket känsliga för avrundningsfel även då till tillämpas på välställda problem. Om möjligt, undvik sådana algoritmer! Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (21 : 21)

Datoraritmetik. Från labben. Från labben. Några exempel

Datoraritmetik. Från labben. Från labben. Några exempel Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,

Läs mer

n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas

n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas Datoraritmetik Beräkningsvetenskap I/KF Kursboken n Kap 4., 4., (4.3), 4.4, 4. n I kap 4.3 används Taylorutvecklingar. Om du ännu inte gått igenom detta i matematiken, kan du oppa över de delar som beandlar

Läs mer

Föreläsning 8: Aritmetik och stora heltal

Föreläsning 8: Aritmetik och stora heltal 2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen

Läs mer

7 november 2014 Sida 1 / 21

7 november 2014 Sida 1 / 21 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

Feluppskattning och räknenoggrannhet

Feluppskattning och räknenoggrannhet Vetenskapliga beräkningar III 10 Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare.

Läs mer

Kapitel 2. Feluppskattning och räknenoggrannhet

Kapitel 2. Feluppskattning och räknenoggrannhet Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare. Liksom vid beräkningar för hand

Läs mer

TANA19 NUMERISKA METODER

TANA19 NUMERISKA METODER HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 1 Felanalys Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur : 1

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis

Läs mer

Föreläsning 8: Aritmetik och stora heltal

Föreläsning 8: Aritmetik och stora heltal DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2007-11-06 Skribent(er): Martin Tittenberger, Patrik Lilja Föreläsare: Per Austrin Denna föreläsning

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

IE1205 Digital Design: F6 : Digital aritmetik 2

IE1205 Digital Design: F6 : Digital aritmetik 2 IE1205 Digital Design: F6 : Digital aritmetik 2 Talrepresentationer Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers)

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab? Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom

Läs mer

F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson!

F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson! F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekventiell exekvering av instruktionerna.

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan

Läs mer

Sammanfattninga av kursens block inför tentan

Sammanfattninga av kursens block inför tentan FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,

Läs mer

F2 Datarepresentation talbaser, dataformat och teckenkodning

F2 Datarepresentation talbaser, dataformat och teckenkodning F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Jonas Wisbrant Datarepresentation I en dator lagras och behandlas all information i form av binära tal ettor och nollor.

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:

Läs mer

Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,

Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt

Läs mer

a n β n + a n 1 β n a 0 + a 1 β 1 + a 2 β , x = r β e ; 0.1 r < 1; e = heltal.

a n β n + a n 1 β n a 0 + a 1 β 1 + a 2 β , x = r β e ; 0.1 r < 1; e = heltal. De iakttagna fenomenen beror på avrundningsfel, och vi skall därför studera talframställningen i datorer. Vid beräkningar för hand är det vanligt att man uttrycker tal i tiopotensframställningen, men i

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #24 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Allmänt Behovet av processorinstruktioner för multiplikation

Läs mer

Beräkningsvetenskap introduktion. Beräkningsvetenskap I

Beräkningsvetenskap introduktion. Beräkningsvetenskap I Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, numerisk metod, diskretisering maskinepsilon,

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska

Läs mer

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394 Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)

Läs mer

Datorsystemteknik DVG A03 Föreläsning 3

Datorsystemteknik DVG A03 Föreläsning 3 Datorsystemteknik DVG A03 Föreläsning 3 Datoraritmetik Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Hur stora tal kan vi få med N bitar? Största

Läs mer

Flyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar.

Flyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar. FLYTTAL REAL Flyttal används i datorsystem för s k flytande beräkning vilket innebär att decimalkommat inte har någon fix (fast) position. Flyttal består av 2 delar (mantissa och exponent). När ett datorsystem

Läs mer

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska

Läs mer

Beräkningsvetenskap introduktion. Beräkningsvetenskap I

Beräkningsvetenskap introduktion. Beräkningsvetenskap I Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och

Läs mer

Tentamen i: Beräkningsvetenskap I och KF

Tentamen i: Beräkningsvetenskap I och KF Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.

Läs mer

Analys av elektriska nät med numeriska metoder i MATLAB

Analys av elektriska nät med numeriska metoder i MATLAB Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare

Läs mer

Föreläsning 8: Aritmetik I

Föreläsning 8: Aritmetik I DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik I Datum: 2009-11-03 Skribent(er): Andreas Sehr, Carl Bring, Per Almquist Föreläsare: Fredrik Niemelä 1 Flyttal Att representera

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud. Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Introduktionsföreläsning

Introduktionsföreläsning Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

Fö4: Kondition och approximation. Andrea Alessandro Ruggiu

Fö4: Kondition och approximation. Andrea Alessandro Ruggiu TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

2D1240 Numeriska metoder gk II för T2, VT Störningsanalys

2D1240 Numeriska metoder gk II för T2, VT Störningsanalys Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Interpolation Modellfunktioner som satisfierar givna punkter

Interpolation Modellfunktioner som satisfierar givna punkter Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I

Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner) Elias Rudberg

Läs mer

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

Varning!!! Varning!!!

Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

Introduktionsföreläsning

Introduktionsföreläsning Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 1 september, 2014 Lärare Emanuel Rubensson Outline 1 Vad är beräkningsvetenskap? 2 Information

Läs mer

Validering av flyttalsberäkningar och. ForSyDe

Validering av flyttalsberäkningar och. ForSyDe Validering av flyttalsberäkningar och sinus- och cosinusimplementation på FPGA för ForSyDe Validation of Floating Point calculations and Sine and Cosine implementation on FPGA using ForSyDe HUSSEIN EZZEDDINE

Läs mer

Block 2: Lineära system

Block 2: Lineära system Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen

Läs mer

Datorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d

Datorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d Datorsystem Övningshäfte Senast uppdaterad: 22 oktober 2012 Version 1.0d Innehåll Innehåll i 1 Introduktion 1 1.1 Errata............................................... 1 2 Datorns grunder 2 2.1 Övningsuppgifter.........................................

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

t Möjliga lösningar? b

t Möjliga lösningar? b b 12 10 8 6 4 2 0 Möjliga lösningar? 0 1 2 3 4 5 6 t b 12 10 8 6 4 2 0 Elementen i residualen r 5 r 4 r 3 0 1 2 3 4 5 6 t r 1 r 2 b 12 10 8 6 4 2 0 Minstakvadratlösningen 0 1 2 3 4 5 6 t OH-bild från Matte

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

DIGITALA TAL OCH BOOLESK ALGEBRA

DIGITALA TAL OCH BOOLESK ALGEBRA DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Inledning. Statistisk Programmering. UNIVAC 1107 (sextio- och sjuttiotal) Hålkorten. Att använda dator

Inledning. Statistisk Programmering. UNIVAC 1107 (sextio- och sjuttiotal) Hålkorten. Att använda dator Inledning Statistisk Programmering Att använda dator Datorernas utveckling sen 1970 har revolutionerat den statistiska vetenskapen! Göran Broström gb@statumuse Statistiska institutionen Umeå universitet

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

F2 Binära tal EDA070 Datorer och datoranvändning

F2 Binära tal EDA070 Datorer och datoranvändning Datarepresentation F2 Binära tal EDA070 Roger Henriksson I en dator lagras och behandlas all information i form av binära tal ettor och nollor. En binär siffra kallas för en bit BInary digit. Ett antal

Läs mer

Maskinorienterad Programmering - 2010/2011. Maskinorienterad Programmering 2010/11. Maskinnära programmering C och assemblerspråk

Maskinorienterad Programmering - 2010/2011. Maskinorienterad Programmering 2010/11. Maskinnära programmering C och assemblerspråk Maskinorienterad Programmering 2010/11 Maskinnära programmering C och assemblerspråk Ur innehållet: 32-bitars aritmetik med 16-bitars processor IEEE754 flyttal Maskinnära programmering - C 1 CPU12, ordlängder

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Numerisk Analys, MMG410. Lecture 1. 1/24

Numerisk Analys, MMG410. Lecture 1. 1/24 Numerisk Analys, MMG410. Lecture 1. 1/24 Lärare Kursansvarig och examinator: Larisa Beilina, larisa@chalmers.se, room 2089. Office hours: tisdagar, 15:00-16.00. Handledare för Datorlaborationer och övningar

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Shannon-Fano-Elias-kodning

Shannon-Fano-Elias-kodning Datakompression fö 5 p.1 Shannon-Fano-Elias-kodning Antag att vi har en minnesfri källa X i som tar värden i {1, 2,...,L}. Antag att sannolikheterna för alla symboler är strikt positiva: p(i) > 0, i. Fördelningsfunktionen

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer: FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Föreläsning 3.1: Datastrukturer, en översikt

Föreläsning 3.1: Datastrukturer, en översikt Föreläsning.: Datastrukturer, en översikt Hittills har vi i kursen lagt mycket fokus på algoritmiskt tänkande. Vi har inte egentligen ägna så mycket uppmärksamhet åt det andra som datorprogram också består,

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Numerisk Analys, MMG410. Lecture 13. 1/58

Numerisk Analys, MMG410. Lecture 13. 1/58 Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.

Läs mer

Mattias Wiggberg Collaboration

Mattias Wiggberg Collaboration Informationsteknologi sommarkurs 5p, 24 Mattias Wiggberg Dept. of Information Technology Box 337 SE75 5 Uppsala +46 847 3 76 Collaboration Jakob Carlström Binära tal Slideset 5 Agenda Binära tal Talbaser

Läs mer

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram Mål Lab 2: Underprogram Följande laboration introducerar underprogram; procedurer, funktioner och operatorer. I denna laboration kommer du att lära dig: Hur man skriver underprogram och hur dessa anropas.

Läs mer

Matematik: Beräkningsmatematik (91-97,5 hp)

Matematik: Beräkningsmatematik (91-97,5 hp) DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum

Läs mer

Numerisk Analys, MMG410. Lecture 12. 1/24

Numerisk Analys, MMG410. Lecture 12. 1/24 Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!

Läs mer

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann

Läs mer

6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print

6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Exempel på tentafrågor på boken Lunell: Datalogi-begreppen och tekniken Obs! Andra frågor än dessa kan komma på tentan! 1. Konvertera talet 186 till

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer